Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,929 of 8,931    |
|    ScienceDaily to All    |
|    Precision technology, machine learning l    |
|    14 Jul 23 22:30:26    |
      MSGID: 1:317/3 64b2210e       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Precision technology, machine learning lead to early diagnosis of calf       pneumonia         Wearable sensors, automatic feeders yield clues about onset of bovine       respiratory disease                Date:        July 14, 2023        Source:        Penn State        Summary:        Monitoring dairy calves with precision technologies based on the        'internet of things,' or IoT, leads to the earlier diagnosis of        calf- killing bovine respiratory disease, according to a new        study. The novel approach -- a result of crosscutting -- will        offer dairy producers an opportunity to improve the economies of        their farms, according to researchers.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Monitoring dairy calves with precision technologies based on the "internet       of things," or IoT, leads to the earlier diagnosis of calf-killing bovine       respiratory disease, according to a new study. The novel approach -- a       result of crosscutting collaboration by a team of researchers from Penn       State, University of Kentucky and University of Vermont -- will offer       dairy producers an opportunity to improve the economies of their farms,       according to researchers.              This is not your grandfather's dairy farming strategy, notes lead       researcher Melissa Cantor, assistant professor of precision dairy science       in Penn State's College of Agricultural Sciences. Cantor noted that       new technology is becoming increasingly affordable, offering farmers       opportunities to detect animal health problems soon enough to intervene,       saving the calves and the investment they represent.              IoT refers to embedded devices equipped with sensors, processing and       communication abilities, software, and other technologies to connect       and exchange data with other devices over the Internet. In this study,       Cantor explained, IoT technologies such as wearable sensors and automatic       feeders were used to closely watch and analyze the condition of calves.              Such IoT devices generate a huge amount of data by closely monitoring       the cows' behavior. To make such data easier to interpret, and provide       clues to calf health problems, the researchers adopted machine learning       -- a branch of artificial intelligence that learns the hidden patterns       in the data to discriminate between sick and healthy calves, given the       input from the IoT devices.              "We put leg bands on the calves, which record activity behavior data       in dairy cattle, such as the number of steps and lying time," Cantor       said. "And we used automatic feeders, which dispense milk and grain and       record feeding behaviors, such as the number of visits and liters of       consumed milk. Information from those sources signaled when a calf's       condition was on the verge of deteriorating." Bovine respiratory       disease is an infection of the respiratory tract that is the leading       reason for antimicrobial use in dairy calves and represents 22% of calf       mortalities. The costs and effects of the ailment can severely damage       a farm's economy, since raising dairy calves is one of the largest       economic investments.              "Diagnosing bovine respiratory disease requires intensive and specialized       labor that is hard to find," Cantor said. "So, precision technologies       based on IoT devices such as automatic feeders, scales and accelerometers       can help detect behavioral changes before outward clinical signs of       the disease are manifested." In the study, data was collected from 159       dairy calves using precision livestock technologies and by researchers       who performed daily physical health exams on the calves at the University       of Kentucky. Researchers recorded both automatic data-collection results       and manual data-collection results and compared the two.              In findings recently published in IEEE Access, a peer-reviewed       open-access scientific journal published by the Institute of Electrical       and Electronics Engineers, the researchers reported that the proposed       approach is able to identify calves that developed bovine respiratory       disease sooner. Numerically, the system achieved an accuracy of 88%       for labeling sick and healthy calves.              Seventy percent of sick calves were predicted four days prior to       diagnosis, and 80% of calves that developed a chronic case of the disease       were detected within the first five days of sickness.              "We were really surprised to find out that the relationship with the       behavioral changes in those animals was very different than animals that       got better with one treatment," she said. "And nobody had ever looked at       that before. We came up with the concept that if these animals actually       behave differently, then there's probably a chance that IoT technologies       empowered with machine learning inference techniques could actually       identify them sooner, before anybody can with the naked eye. That offers       producers options." Contributing to the research were: Enrico Casella,       Department of Animal and Dairy Science, University of Wisconsin-Madison;       Melissa Cantor, Department of Animal Science, Penn State University;       Megan Woodrum Setser, Department of Animal and Food Sciences, University       of Kentucky; Simone Silvestri, Department of Computer Science, University       of Kentucky; and Joao Costa, Department of Animal and Veterinary Sciences,       University of Vermont.              This work was supported by the U.S. Department of Agriculture and the       National Science Foundation.               * RELATED_TOPICS        o Plants_&_Animals        # Cows,_Sheep,_Pigs # Veterinary_Medicine #        Agriculture_and_Food        o Earth_&_Climate        # Floods # Wildfires # Earth_Science        o Computers_&_Math        # Information_Technology # Hacking #        Computers_and_Internet        * RELATED_TERMS        o Dairy_cattle o Gross_domestic_product o Vegetarianism o        Bovine_spongiform_encephalopathy o Voice_over_IP o Cattle o        Pollution o World_Wide_Web              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Sports_Safety:_Liquid_Cushioning_Technology *        First-Ever_'Dark_Stars' * Genes_for_Learning:_650_Million_Years_Old        * Stellar_Cradles_and_Graves_in_Faraway_Galaxy *        Overflowing_Cosmic_'Jug' * Ghost_Stars_in_Our_Galaxy *        Multiple_Ecosystems_in_Hot_Water * How_an_'AI-Tocracy'_Emerges        * Building_a_Better_Tree_With_CRISPR_Gene_Editing *        Unprecedented_Control_Of_Every_Finger_of_...                     Trending Topics this week       ==========================================================================       PLANTS_&_ANIMALS Biology Nature Biotechnology EARTH_&_CLIMATE       Environmental_Awareness Oceanography Water FOSSILS_&_RUINS Fossils       Early_Mammals Ancient_Civilizations                     ==========================================================================              Strange & Offbeat       ==========================================================================       PLANTS_&_ANIMALS Fungi_Blaze_a_Trail_to_Fireproof_Cladding       Ice_Age_Saber-Tooth_Cats_and_Dire_Wolves_Suffered_from_Diseased_Joints       Tiny_Fish_Surprise_Scientists_in_'Volunteer's_Dilemma' EARTH_&_CLIMATE       Why_There_Are_No_Kangaroos_in_Bali_(and_No_Tigers_in_Australia)       Turning_Old_Maps_Into_3D_Digital_Models_of_Lost_Neighborhoods       Squash_Bugs_Are_Attracted_to_and_Eat_Each_Other's_Poop_to_Stock_Their       Microbiome FOSSILS_&_RUINS       Giant_Stone_Artefacts_Found_on_Rare_Ice_Age_Site_in_Kent,_UK       Fossils_Reveal_How_Ancient_Birds_Molted_Their_Feathers_--_Which_Could_Help       Explain_Why_Ancestors_of_Modern_Birds_Survived_When_All_the_Other_Dinosaurs       Died Apex_Predator_of_the_Cambrian_Likely_Sought_Soft_Over_Crunchy_Prey       Story Source: Materials provided by Penn_State. Original written by Jeff       Mulhollem. Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Enrico Casella, Melissa C. Cantor, Megan M Woodrum Setser, Simone        Silvestri, Joao H.C. Costa. A Machine Learning and Optimization        Framework for the Early Diagnosis of Bovine Respiratory        Disease. IEEE Access, 2023; 1 DOI: 10.1109/ACCESS.2023.3291348       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230714131136.htm              --- up 1 year, 19 weeks, 4 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca