Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,928 of 8,931    |
|    ScienceDaily to All    |
|    Liquid safety cushioning technology    |
|    14 Jul 23 22:30:26    |
      MSGID: 1:317/3 64b2210b       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Liquid safety cushioning technology         A breakthrough in material design will help football players, car       occupants and hospital patients                Date:        July 14, 2023        Source:        University of Virginia School of Engineering and Applied Science        Summary:        Mechanical engineering and materials science advancements could        revolutionize safety equipment for athletes and more.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       The discovery that football players were unknowingly acquiring permanent       brain damage as they racked up head hits throughout their professional       careers created a rush to design better head protection. One of these       inventions is nanofoam, the material on the inside of football helmets.              Thanks to mechanical and aerospace engineering associate professor Baoxing       Xu at the University of Virginia and his research team, nanofoam just       received a big upgrade and protective sports equipment could, too. This       newly invented design integrates nanofoam with "non-wetting ionized       liquid," a form of water that Xu and his research team now know blends       perfectly with nanofoam to create a liquid cushion. This versatile       and responsive material will give better protection to athletes and       is promising for use in protecting car occupants and aiding hospital       patients using wearable medical devices.              The team's research was recently published inAdvanced Materials.              For maximum safety, the protective foam sandwiched between the inner       and outer layers of a helmet should not only be able to take one hit       but multiple hits, game after game. The material needs to be cushiony       enough to create a soft place for a head to land, but resilient enough       to bounce back and be ready for the next blow. And the material needs       to be resilient but not hard, because "hard" hurts heads, too. Having       one material do all of these things is a pretty tall order.              The team advanced their work previously published in theProceedings of       the National Academy of Sciences, which started exploring the use of       liquids in nanofoam, to create a material that meets the complex safety       demands of high- contact sports.              "We found out that creating a liquid nanofoam cushion with ionized water       instead of regular water made a significant difference in the way the       material performed," Xu said. "Using ionized water in the design is a       breakthrough because we uncovered an unusual liquid-ion coordination       network which made it possible to create a more sophisticated material."       The liquid nanofoam cushion allows the inside of the helmet to compress       and disperse the impact force, minimizing the force transmitted to       the head and reducing the risk of injury. It also regains its original       shape after impact, allowing for multiple hits and ensuring the helmet's       continued effectiveness in protecting the athlete's head during the game.              "An added bonus," Xu continued, "is that the enhanced material is more       flexible and much more comfortable to wear. The material dynamically       responds to external jolts because of the way the ion clusters and       networks are fabricated in the material." "The liquid cushion can be       designed as lighter, smaller and safer protective devices," said associate       professor Weiyi Lu, a collaborator from civil engineering at Michigan       State University. "Also, the reduced weight and size of the liquid       nanofoam liners will revolutionize the design of the hard shell of future       helmets. You could be watching a football game one day and wonder how the       smaller helmets protect the players' heads. It could be because of our       new material." In traditional nanofoam, the protection mechanism relies       on material properties that react when it gets crunched, or mechanically       deformed, such as "collapse" and "densification." Collapse is what it       sounds like, and densification is the severe deformation of foam on       strong impact. After the collapse and densification, the traditional       nanofoam doesn't recover very well because of the permanent deformation       of materials -- making the protection a one-time deal. When compared to       the liquid nanofoam, these properties are very slow (a few milliseconds)       and cannot accommodate the "high-force reduction requirement," which       means it can't effectively absorb and dissipate high-force blows in the       short time window associated with collisions and impacts.              Another downside of traditional nanofoam is that, when subjected to       multiple small impacts that don't deform the material, the foam becomes       completely "hard" and behaves as a rigid body that cannot provide       protection. The rigidness could potentially lead to injuries and damage       to soft tissues, such as traumatic brain injury (TBI).              By manipulating the mechanical properties of materials -- integrating       nanoporous materials with "non-wetting liquid" or ionized water -- the       team developed a way to make a material that could respond to impacts       in a few microseconds because this combination allows for superfast       liquid transport in a nanoconfined environment. Also, upon unloading,       i.e., after impacts, due to its non-wetting nature, the liquid nanofoam       cushion can return to its original form because the liquid is ejected out       of the pores, thereby withstanding repeated blows. This dynamic conforming       and reforming ability also remedies the problem of the material becoming       rigid from micro-impacts.              The same liquid properties that make this new nanofoam safer for athletic       gear also offer a potential use in other places where collisions happen,       like cars, whose safety and material protective systems are being       reconsidered to embrace the emerging era of electric propulsion and       automated vehicles. It can be used to create protective cushions that       absorb impacts during accidents or help reduce vibrations and noise.              Another purpose that might not be as evident is the role liquid nanofoam       can play in the hospital setting. The foam can be used in wearable       medical devices like a smartwatch, which monitors your heart rate and       other vital signs. By incorporating liquid nanofoam technology, the       watch can have a soft and flexible foam-like material on its underside       and help improve the accuracy of the sensors by ensuring proper contact       with your skin. It can conform to the shape of your wrist, making it       comfortable to wear all day. Additionally, the foam can provide extra       protection by acting as a shock absorber. If you accidentally bump your       wrist against a hard surface, the foam can help cushion the impact and       prevent any harm to the sensors or your skin.               * RELATED_TOPICS        o Health_&_Medicine        # Accident_and_Trauma # Today's_Healthcare #        Sports_Medicine        o Mind_&_Brain        # Brain_Injury # Multiple_Sclerosis #        Disorders_and_Syndromes        o Matter_&_Energy        # Nature_of_Water # Materials_Science # Civil_Engineering        * RELATED_TERMS        o Materials_science o Safety_engineering o Metallurgy o        Mechanical_engineering o Tissue_engineering o Tensile_strength        o Security_engineering o Technology              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Sports_Safety:_Liquid_Cushioning_Technology *        First-Ever_'Dark_Stars' * Genes_for_Learning:_650_Million_Years_Old        * Stellar_Cradles_and_Graves_in_Faraway_Galaxy *        Overflowing_Cosmic_'Jug' * Ghost_Stars_in_Our_Galaxy *        Multiple_Ecosystems_in_Hot_Water * How_an_'AI-Tocracy'_Emerges        * Building_a_Better_Tree_With_CRISPR_Gene_Editing *        Unprecedented_Control_Of_Every_Finger_of_...                     Trending Topics this week       ==========================================================================       SPACE_&_TIME Galaxies Astrophysics NASA MATTER_&_ENERGY Technology       Quantum_Physics Spintronics COMPUTERS_&_MATH Information_Technology       Artificial_Intelligence Spintronics_Research                     ==========================================================================              Strange & Offbeat       ==========================================================================       SPACE_&_TIME       James_Webb_Telescope_Catches_Glimpse_of_Possible_First-Ever_'Dark_Stars'       Rare,_Double-Lobe_Nebula_Resembles_Overflowing_Cosmic_'Jug'       When_the_Stars_Align:_Astronomers_Find_Answers_to_Mysterious_Action_of_Ghost       Stars_in_Our_Galaxy MATTER_&_ENERGY       New_Superconductors_Can_Be_Built_Atom_by_Atom Search_for_Dark_Matter       Fungi_Blaze_a_Trail_to_Fireproof_Cladding COMPUTERS_&_MATH       Generative_AI_'Fools'_Scientists_With_Artificial_Data,_Bringing_Automated_Data       Analysis_Closer Pump_Powers_Soft_Robots,_Makes_Cocktails       Training_Robots_How_to_Learn,_Make_Decisions_on_the_Fly       Story Source: Materials provided       by University_of_Virginia_School_of_Engineering_and_Applied       Science. Original written by Wende Whitman. Note: Content may be edited       for style and length.                     ==========================================================================       Journal Reference:        1. Yuan Gao, Mingzhe Li, Chi Zhan, Haozhe Zhang, Mengtian Yin,        Weiyi Lu,        Baoxing Xu. Nanoconfined Water‐Ion Coordination Network        for Flexible Energy Dissipation Device. Advanced Materials, 2023;        DOI: 10.1002/adma.202303759       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230714163215.htm              --- up 1 year, 19 weeks, 4 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca