home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   EARTH      Uhh, that 3rd rock from the sun?      8,931 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 8,928 of 8,931   
   ScienceDaily to All   
   Liquid safety cushioning technology   
   14 Jul 23 22:30:26   
   
   MSGID: 1:317/3 64b2210b   
   PID: hpt/lnx 1.9.0-cur 2019-01-08   
   TID: hpt/lnx 1.9.0-cur 2019-01-08   
    Liquid safety cushioning technology    
    A breakthrough in material design will help football players, car   
   occupants and hospital patients    
      
     Date:   
         July 14, 2023   
     Source:   
         University of Virginia School of Engineering and Applied Science   
     Summary:   
         Mechanical engineering and materials science advancements could   
         revolutionize safety equipment for athletes and more.   
      
      
         Facebook Twitter Pinterest LinkedIN Email   
      
   ==========================================================================   
   FULL STORY   
   ==========================================================================   
   The discovery that football players were unknowingly acquiring permanent   
   brain damage as they racked up head hits throughout their professional   
   careers created a rush to design better head protection. One of these   
   inventions is nanofoam, the material on the inside of football helmets.   
      
   Thanks to mechanical and aerospace engineering associate professor Baoxing   
   Xu at the University of Virginia and his research team, nanofoam just   
   received a big upgrade and protective sports equipment could, too. This   
   newly invented design integrates nanofoam with "non-wetting ionized   
   liquid," a form of water that Xu and his research team now know blends   
   perfectly with nanofoam to create a liquid cushion. This versatile   
   and responsive material will give better protection to athletes and   
   is promising for use in protecting car occupants and aiding hospital   
   patients using wearable medical devices.   
      
   The team's research was recently published inAdvanced Materials.   
      
   For maximum safety, the protective foam sandwiched between the inner   
   and outer layers of a helmet should not only be able to take one hit   
   but multiple hits, game after game. The material needs to be cushiony   
   enough to create a soft place for a head to land, but resilient enough   
   to bounce back and be ready for the next blow. And the material needs   
   to be resilient but not hard, because "hard" hurts heads, too. Having   
   one material do all of these things is a pretty tall order.   
      
   The team advanced their work previously published in theProceedings of   
   the National Academy of Sciences, which started exploring the use of   
   liquids in nanofoam, to create a material that meets the complex safety   
   demands of high- contact sports.   
      
   "We found out that creating a liquid nanofoam cushion with ionized water   
   instead of regular water made a significant difference in the way the   
   material performed," Xu said. "Using ionized water in the design is a   
   breakthrough because we uncovered an unusual liquid-ion coordination   
   network which made it possible to create a more sophisticated material."   
   The liquid nanofoam cushion allows the inside of the helmet to compress   
   and disperse the impact force, minimizing the force transmitted to   
   the head and reducing the risk of injury. It also regains its original   
   shape after impact, allowing for multiple hits and ensuring the helmet's   
   continued effectiveness in protecting the athlete's head during the game.   
      
   "An added bonus," Xu continued, "is that the enhanced material is more   
   flexible and much more comfortable to wear. The material dynamically   
   responds to external jolts because of the way the ion clusters and   
   networks are fabricated in the material."  "The liquid cushion can be   
   designed as lighter, smaller and safer protective devices," said associate   
   professor Weiyi Lu, a collaborator from civil engineering at Michigan   
   State University. "Also, the reduced weight and size of the liquid   
   nanofoam liners will revolutionize the design of the hard shell of future   
   helmets. You could be watching a football game one day and wonder how the   
   smaller helmets protect the players' heads. It could be because of our   
   new material."  In traditional nanofoam, the protection mechanism relies   
   on material properties that react when it gets crunched, or mechanically   
   deformed, such as "collapse" and "densification." Collapse is what it   
   sounds like, and densification is the severe deformation of foam on   
   strong impact. After the collapse and densification, the traditional   
   nanofoam doesn't recover very well because of the permanent deformation   
   of materials -- making the protection a one-time deal. When compared to   
   the liquid nanofoam, these properties are very slow (a few milliseconds)   
   and cannot accommodate the "high-force reduction requirement," which   
   means it can't effectively absorb and dissipate high-force blows in the   
   short time window associated with collisions and impacts.   
      
   Another downside of traditional nanofoam is that, when subjected to   
   multiple small impacts that don't deform the material, the foam becomes   
   completely "hard" and behaves as a rigid body that cannot provide   
   protection. The rigidness could potentially lead to injuries and damage   
   to soft tissues, such as traumatic brain injury (TBI).   
      
   By manipulating the mechanical properties of materials -- integrating   
   nanoporous materials with "non-wetting liquid" or ionized water -- the   
   team developed a way to make a material that could respond to impacts   
   in a few microseconds because this combination allows for superfast   
   liquid transport in a nanoconfined environment. Also, upon unloading,   
   i.e., after impacts, due to its non-wetting nature, the liquid nanofoam   
   cushion can return to its original form because the liquid is ejected out   
   of the pores, thereby withstanding repeated blows. This dynamic conforming   
   and reforming ability also remedies the problem of the material becoming   
   rigid from micro-impacts.   
      
   The same liquid properties that make this new nanofoam safer for athletic   
   gear also offer a potential use in other places where collisions happen,   
   like cars, whose safety and material protective systems are being   
   reconsidered to embrace the emerging era of electric propulsion and   
   automated vehicles. It can be used to create protective cushions that   
   absorb impacts during accidents or help reduce vibrations and noise.   
      
   Another purpose that might not be as evident is the role liquid nanofoam   
   can play in the hospital setting. The foam can be used in wearable   
   medical devices like a smartwatch, which monitors your heart rate and   
   other vital signs. By incorporating liquid nanofoam technology, the   
   watch can have a soft and flexible foam-like material on its underside   
   and help improve the accuracy of the sensors by ensuring proper contact   
   with your skin. It can conform to the shape of your wrist, making it   
   comfortable to wear all day. Additionally, the foam can provide extra   
   protection by acting as a shock absorber. If you accidentally bump your   
   wrist against a hard surface, the foam can help cushion the impact and   
   prevent any harm to the sensors or your skin.   
      
       * RELATED_TOPICS   
             o Health_&_Medicine   
                   # Accident_and_Trauma # Today's_Healthcare #   
                   Sports_Medicine   
             o Mind_&_Brain   
                   # Brain_Injury # Multiple_Sclerosis #   
                   Disorders_and_Syndromes   
             o Matter_&_Energy   
                   # Nature_of_Water # Materials_Science # Civil_Engineering   
       * RELATED_TERMS   
             o Materials_science o Safety_engineering o Metallurgy o   
             Mechanical_engineering o Tissue_engineering o Tensile_strength   
             o Security_engineering o Technology   
      
   ==========================================================================   
      
    Print   
      
    Email   
      
    Share   
   ==========================================================================   
   ****** 1 ****** ***** 2 ***** **** 3 ****   
   *** 4 *** ** 5 ** Breaking this hour   
   ==========================================================================   
       * Sports_Safety:_Liquid_Cushioning_Technology *   
       First-Ever_'Dark_Stars' * Genes_for_Learning:_650_Million_Years_Old   
       * Stellar_Cradles_and_Graves_in_Faraway_Galaxy *   
       Overflowing_Cosmic_'Jug' * Ghost_Stars_in_Our_Galaxy *   
       Multiple_Ecosystems_in_Hot_Water * How_an_'AI-Tocracy'_Emerges   
       * Building_a_Better_Tree_With_CRISPR_Gene_Editing *   
       Unprecedented_Control_Of_Every_Finger_of_...   
      
      
   Trending Topics this week   
   ==========================================================================   
   SPACE_&_TIME Galaxies Astrophysics NASA MATTER_&_ENERGY Technology   
   Quantum_Physics Spintronics COMPUTERS_&_MATH Information_Technology   
   Artificial_Intelligence Spintronics_Research   
      
      
   ==========================================================================   
      
   Strange & Offbeat   
   ==========================================================================   
   SPACE_&_TIME   
   James_Webb_Telescope_Catches_Glimpse_of_Possible_First-Ever_'Dark_Stars'   
   Rare,_Double-Lobe_Nebula_Resembles_Overflowing_Cosmic_'Jug'   
   When_the_Stars_Align:_Astronomers_Find_Answers_to_Mysterious_Action_of_Ghost   
   Stars_in_Our_Galaxy MATTER_&_ENERGY   
   New_Superconductors_Can_Be_Built_Atom_by_Atom Search_for_Dark_Matter   
   Fungi_Blaze_a_Trail_to_Fireproof_Cladding COMPUTERS_&_MATH   
   Generative_AI_'Fools'_Scientists_With_Artificial_Data,_Bringing_Automated_Data   
   Analysis_Closer Pump_Powers_Soft_Robots,_Makes_Cocktails   
   Training_Robots_How_to_Learn,_Make_Decisions_on_the_Fly   
   Story Source: Materials provided   
   by University_of_Virginia_School_of_Engineering_and_Applied   
   Science. Original written by Wende Whitman. Note: Content may be edited   
   for style and length.   
      
      
   ==========================================================================   
   Journal Reference:   
      1. Yuan Gao, Mingzhe Li, Chi Zhan, Haozhe Zhang, Mengtian Yin,   
      Weiyi Lu,   
         Baoxing Xu. Nanoconfined Water‐Ion Coordination Network   
         for Flexible Energy Dissipation Device. Advanced Materials, 2023;   
         DOI: 10.1002/adma.202303759   
   ==========================================================================   
      
   Link to news story:   
   https://www.sciencedaily.com/releases/2023/07/230714163215.htm   
      
   --- up 1 year, 19 weeks, 4 days, 10 hours, 50 minutes   
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)   
   SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114   
   SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854   
   SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35   
   PATH: 317/3 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca