Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,915 of 8,931    |
|    ScienceDaily to All    |
|    Understanding metabolites underlying eye    |
|    14 Jul 23 22:30:26    |
      MSGID: 1:317/3 64b220e4       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Understanding metabolites underlying eye development         Findings further understanding of the metabolic pathways underlying organ       development                Date:        July 14, 2023        Source:        Northwestern University        Summary:        Aerobic glycolysis, the process by which cells transform glucose        into lactate, is key for eye development in mammals, according to        a new study.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Aerobic glycolysis, the process by which cells transform glucose into       lactate, is key for eye development in mammals, according to a new       Northwestern Medicine study published inNature Communications.              While it has been well known that retinal cells use lactate during cell       differentiation, the exact role that this process plays in early eye       development was not previously understood.              The findings further the field's understanding of the metabolic pathways       underlying organ development, according to Guillermo Oliver, PhD, the       Thomas D.              Spies Professor of Lymphatic Metabolism, Director of the Feinberg       Cardiovascular and Renal Research Institute Center for Vascular and       Developmental Biology, and senior author of the study.              "For a long time, my lab has been interested in developmental biology. In       particular, to characterize the molecular and cellular steps regulating       early eye morphogenesis," Oliver said. "For us, the question was:       'How do these remarkable and critical sensory organs we have in our       face start to form?'" Nozomu Takata, PhD, a postdoctoral fellow in       the Oliver lab and first author of the paper, initially approached       this question by developing embryonic stem cell-derived eye organoids,       which are organ-like tissues engineered in a petri dish. Intriguingly,       he observed that early mouse eye progenitors display elevated glycolytic       activity and production of lactate. After introducing a glycolysis       inhibitor to the cultured organoids, normal optic vesicle development       halted, according to the study, but adding back lactate allowed the       organoids to resume normal eye morphogenesis, or development.              Takata and his collaborators then compared those organoids to controls       using genome-wide transcriptome and epigenetic analysis using RNA       and ChIP sequencing. They found that inhibiting glycolysis and adding       lactate to the organoids regulated the expression of certain critical       and evolutionary conserved genes required for early eye development.              To validate these findings, Takata deleted Glut1 and Ldha, genes known       for regulating glucose transport and lactate production from developing       retinas in mouse embryos. The deletion of these genes arrested normal       glucose transport specifically in the eye-forming region, according to       the study.              "What we found was an ATP-independent role of the glycolytic pathway,"       Takata said. "Lactate, which is a metabolite known as a waste product       before, is really doing something cool in eye morphogenesis. That really       tells us that this metabolite is a key player in organ morphogenesis       and in particular, eye morphogenesis. I see this discovery as having       broader implications, as likely also being required in other organs and       maybe in regeneration and disease as well." Following this discovery,       Takata said he plans to continue to take advantage of traditional and       emerging developmental biology's tools such as mouse genetics and stem       cells-derived organoids to study the role of the glycolytic pathway and       metabolism in the development of other organs.              The findings could also be useful in better understanding the direct       effect that metabolites could have in regulating gene expression during       organ regeneration and tumor development, Oliver said.              "Both regeneration and tumorigenesis involve developmental pathways       that go awry in some occasions, or you need to reactivate," Oliver       said. "For many developmental processes, you need very strict       transcriptional regulation. A gene is on or off at certain times,       and when that goes wrong, that could lead to developmental defects       or promote tumorigenesis. Now that we know that there are specific       metabolites responsible for normal or abnormal gene regulation, this       can broaden our thinking on approaches to therapeutic treatments."       Additional Feinberg faculty co-authors include Ali Shilatifard, PhD,       the Robert Francis Furchgott Professor and chair of Biochemistry       and Molecular Genetics and director of the Simpson Querrey Institute       for Epigenetics, Alexander Misharin, MD, PhD, associate professor of       Medicine in the Division of Pulmonary and Critical Care, Jason M. Miska,       PhD, assistant professor of Neurological Surgery and Navdeep Chandel,       PhD, the David W. Cugell, MD, Professor of Medicine in the Division of       Pulmonary and Critical Care and of Biochemistry and Molecular Genetics.              The study was supported by an Illumina Next Generation Sequencing award        * RELATED_TOPICS        o Health_&_Medicine        # Eye_Care # Medical_Topics # Stem_Cells # Genes        o Mind_&_Brain        # Child_Development # Learning_Disorders #        Infant_and_Preschool_Learning # Intelligence        * RELATED_TERMS        o Aerobic_exercise o Blood_sugar o Lactic_acid o Neurobiology        o Glycogen o Tooth_development o Glutamic_acid o Eye              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Sports_Safety:_Liquid_Cushioning_Technology *        First-Ever_'Dark_Stars' * Genes_for_Learning:_650_Million_Years_Old        * Stellar_Cradles_and_Graves_in_Faraway_Galaxy *        Overflowing_Cosmic_'Jug' * Ghost_Stars_in_Our_Galaxy *        Multiple_Ecosystems_in_Hot_Water * How_an_'AI-Tocracy'_Emerges        * Building_a_Better_Tree_With_CRISPR_Gene_Editing *        Unprecedented_Control_Of_Every_Finger_of_...                     Trending Topics this week       ==========================================================================       HEALTH_&_MEDICINE Nervous_System Genes Immune_System MIND_&_BRAIN       Intelligence Brain_Injury Brain-Computer_Interfaces LIVING_&_WELL Behavior       Child_Development Healthy_Aging                     ==========================================================================              Strange & Offbeat       ==========================================================================       HEALTH_&_MEDICINE       Surgical_and_Engineering_Innovations_Enable_Unprecedented_Control_Over_Every       Finger_of_a_Bionic_Hand       Capturing_the_Immense_Potential_of_Microscopic_DNA_for_Data_Storage       Revolutionary_Self-Sensing_Electric_Artificial_Muscles MIND_&_BRAIN       The_Sound_of_Silence?_Researchers_Demonstrate_People_Hear_It       AI_Tests_Into_Top_1%_for_Original_Creative_Thinking       Everyone's_Brain_Has_a_Pain_Fingerprint_--_New_Research_Has_Revealed_for_the       First_Time LIVING_&_WELL       These_Lollipops_Could_'Sweeten'_Diagnostic_Testing_for_Kids_and_Adults_Alike       Grocery_Store_Carts_Set_to_Help_Diagnose_Common_Heart_Rhythm_Disorder_and       Prevent_Stroke Illusions_Are_in_the_Eye,_Not_the_Mind Story Source:       Materials provided by Northwestern_University. Original written by Olivia       Dimmer. Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Nozomu Takata, Jason M. Miska, Marc A. Morgan, Priyam Patel, Leah K.               Billingham, Neha Joshi, Matthew J. Schipma, Zachary J. Dumar,        Nikita R.               Joshi, Alexander V. Misharin, Ryan B. Embry, Luciano Fiore, Peng        Gao, Lauren P. Diebold, Gregory S. McElroy, Ali Shilatifard,        Navdeep S.               Chandel, Guillermo Oliver. Lactate-dependent transcriptional        regulation controls mammalian eye morphogenesis. Nature        Communications, 2023; 14 (1) DOI: 10.1038/s41467-023-39672-2       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230714131134.htm              --- up 1 year, 19 weeks, 4 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca