home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   EARTH      Uhh, that 3rd rock from the sun?      8,931 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 8,906 of 8,931   
   ScienceDaily to All   
   A ferroelectric transistor that stores a   
   13 Jul 23 22:30:28   
   
   MSGID: 1:317/3 64b0cf9e   
   PID: hpt/lnx 1.9.0-cur 2019-01-08   
   TID: hpt/lnx 1.9.0-cur 2019-01-08   
    A ferroelectric transistor that stores and computes at scale    
      
     Date:   
         July 13, 2023   
     Source:   
         University of Pennsylvania School of Engineering and Applied Science   
     Summary:   
         Researchers have introduced a new FE-FET design that demonstrates   
         record- breaking performances in both computing and memory.   
      
      
         Facebook Twitter Pinterest LinkedIN Email   
      
   ==========================================================================   
   FULL STORY   
   ==========================================================================   
   The Big Data revolution has strained the capabilities of state-of-the-art   
   electronic hardware, challenging engineers to rethink almost every   
   aspect of the microchip. With ever more enormous data sets to store,   
   search and analyze at increasing levels of complexity, these devices   
   must become smaller, faster and more energy efficient to keep up with   
   the pace of data innovation.   
      
   Ferroelectric field effect transistors (FE-FETs) are among the most   
   intriguing answers to this challenge. Like traditional silicon-based   
   transistors, FE-FETs are switches, turning on and off at incredible speed   
   to communicate the 1s and 0s computers use to perform their operations.   
      
   But FE-FETs have an additional function that conventional transistors do   
   not: their ferroelectric properties allow them to hold on to electrical   
   charge.   
      
   This property allows them to serve as non-volatile memory devices as   
   well as computing devices. Able to both store and process data, FE-FETs   
   are the subject of a wide range of research and development projects. A   
   successful FE-FET design would dramatically undercut the size and energy   
   usage thresholds of traditional devices, as well as increase speed.   
      
   Researchers at the University of Pennsylvania School of Engineering and   
   Applied Science have introduced a new FE-FET design that demonstrates   
   record-breaking performances in both computing and memory.   
      
   A recent study published in Nature Nanotechnology led by Deep Jariwala,   
   Associate Professor in the Department of Electrical and Systems   
   Engineering (ESE), and Kwan-Ho Kim, a Ph.D. candidate in his lab, debuted   
   the design. They collaborated with fellow Penn Engineering faculty   
   members Troy Olsson, also Associate Professor in ESE, and Eric Stach,   
   Robert D. Bent Professor of Engineering in the Department of Materials   
   Science and Engineering (MSE) and Director of the Laboratory for Research   
   on the Structure of Matter (LRSM).   
      
   The transistor layers a two-dimensional semiconductor called molybdenum   
   disulfide (MoS2) on top of a ferroelectric material called aluminum   
   scandium nitride (AlScN), demonstrating for the first time that these   
   two materials can be effectively combined to create transistors at scales   
   attractive to industrial manufacturing.   
      
   "Because we have made these devices combining a ferroelectric insulator   
   material with a 2D semiconductor, both are very energy efficient,"   
   says Jariwala. "You can use them for computing as well as memory --   
   interchangeably and with high efficiency."  The Penn Engineering team's   
   device is notable for its unprecedented thinness, allowing for each   
   individual device to operate with a minimum amount of surface area. In   
   addition, the tiny devices can be manufactured in large arrays scalable   
   to industrial platforms.   
      
   "With our semiconductor, MoS2, at a mere 0.7 nanometers, we weren't   
   sure it could survive the amount of charge that our ferroelectric   
   material, AlScN, would inject into it," says Kim. "To our surprise,   
   not only did both of them survive, but the amount of current this   
   enables the semiconductor to carry was also record-breaking."  The more   
   current a device can carry, the faster it can operate for computing   
   applications. The lower the resistance, the faster the access speed   
   for memory.   
      
   This MoS2 and AlScN combination is a true breakthrough in transistor   
   technology. Other research teams' FE-FETs have been consistently stymied   
   by a loss of ferroelectric properties as devices miniaturize to approach   
   industry- appropriate scales.   
      
   Until this study, miniaturizing FE-FETs has resulted in severe shrinking   
   of the "memory window." This means that as engineers reduce the size   
   of the transistor design, the device develops an unreliable memory,   
   mistaking 1s for 0s and vice versa, compromising its overall performance.   
      
   The Jariwala lab and collaborators achieved a design that keeps the memory   
   window large with impressively small device dimensions. With AlScN at   
   20 nanometers, and MoS2 at 0.7 nanometers, the FE-FET dependably stores   
   data for quick access.   
      
   "The key," says Olsson, "is our ferroelectric material, AlScN. Unlike   
   many ferroelectric materials, it maintains its unique properties even when   
   very thin. In a recent paper from my group, we showed that it can we can   
   retain its unique ferroelectric properties at even smaller thicknesses:   
   5 nanometers."  The Penn Engineering team's next steps are focused on this   
   further miniaturization to produce devices that operate with voltages low   
   enough to be compatible with leading-edge consumer device manufacturing.   
      
   "Our FE-FETs are incredibly promising," says Jariwala. "With further   
   development, these versatile devices could have a place in almost any   
   technology you can think of, especially those that are AI-enabled and   
   consume, generate or process vast amounts of data -- from sensing to   
   communications and more."   
       * RELATED_TOPICS   
             o Matter_&_Energy   
                   # Materials_Science # Electronics # Spintronics #   
                   Engineering_and_Construction   
             o Computers_&_Math   
                   # Spintronics_Research # Computers_and_Internet #   
                   Information_Technology # Mobile_Computing   
       * RELATED_TERMS   
             o Computing_power_everywhere o Grid_computing o Breaking_wave   
             o User_interface_design o Computing o Architecture o   
             Circuit_design o Bicycle   
      
   ==========================================================================   
      
    Print   
      
    Email   
      
    Share   
   ==========================================================================   
   ****** 1 ****** ***** 2 ***** **** 3 ****   
   *** 4 *** ** 5 ** Breaking this hour   
   ==========================================================================   
       * Overflowing_Cosmic_'Jug' * Ghost_Stars_in_Our_Galaxy *   
       Multiple_Ecosystems_in_Hot_Water * How_an_'AI-Tocracy'_Emerges   
       * Building_a_Better_Tree_With_CRISPR_Gene_Editing *   
       Unprecedented_Control_Of_Every_Finger_of_...   
      
       * Widespread_Death_of_Insects:_Air_Pollution   
       * Webb_Celebrates_First_Year_of_Science *   
       New_Parkinson's_Disease_Cell_Therapies *   
       Circular_DNA_Grabs_DNA_Repair_Mechanism:_...   
      
      
   Trending Topics this week   
   ==========================================================================   
   SPACE_&_TIME Galaxies NASA Nebulae MATTER_&_ENERGY Technology   
   Materials_Science Nature_of_Water COMPUTERS_&_MATH Robotics   
   Artificial_Intelligence Information_Technology   
      
      
   ==========================================================================   
      
   Strange & Offbeat   
   ==========================================================================   
   SPACE_&_TIME Rare,_Double-Lobe_Nebula_Resembles_Overflowing_Cosmic_'Jug'   
   New_Study_Reveals_Evidence_of_Diverse_Organic_Material_on_Mars   
   Training_Robots_How_to_Learn,_Make_Decisions_on_the_Fly   
   MATTER_&_ENERGY Fungi_Blaze_a_Trail_to_Fireproof_Cladding   
   Surgical_and_Engineering_Innovations_Enable_Unprecedented_Control_Over_Every   
   Finger_of_a_Bionic_Hand   
   Generative_AI_'Fools'_Scientists_With_Artificial_Data,_Bringing_Automated_Data   
   Analysis_Closer COMPUTERS_&_MATH   
   Capturing_the_Immense_Potential_of_Microscopic_DNA_for_Data_Storage   
   Revolutionary_Self-Sensing_Electric_Artificial_Muscles   
   Bees_Make_Decisions_Better_and_Faster_Than_We_Do,_for_the_Things_That_Matter_to   
   Them Story Source: Materials provided by   
   University_of_Pennsylvania_School_of_Engineering_and   
   Applied_Science. Original written by Devorah Fischler. Note: Content   
   may be edited for style and length.   
      
      
   ==========================================================================   
   Journal Reference:   
      1. Kwan-Ho Kim, Seyong Oh, Merrilyn Mercy Adzo Fiagbenu, Jeffrey Zheng,   
         Pariasadat Musavigharavi, Pawan Kumar, Nicholas Trainor, Areej   
         Aljarb, Yi Wan, Hyong Min Kim, Keshava Katti, Seunguk Song, Gwangwoo   
         Kim, Zichen Tang, Jui-Han Fu, Mariam Hakami, Vincent Tung, Joan   
         M. Redwing, Eric A.   
      
         Stach, Roy H. Olsson, Deep Jariwala. Scalable CMOS back-end-of-line-   
         compatible AlScN/two-dimensional channel ferroelectric   
         field-effect transistors. Nature Nanotechnology, 2023; DOI:   
         10.1038/s41565-023-01399-y   
   ==========================================================================   
      
   Link to news story:   
   https://www.sciencedaily.com/releases/2023/07/230713141955.htm   
      
   --- up 1 year, 19 weeks, 3 days, 10 hours, 50 minutes   
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)   
   SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114   
   SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854   
   SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35   
   PATH: 317/3 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca