Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,903 of 8,931    |
|    ScienceDaily to All    |
|    Researchers develop approach that can en    |
|    13 Jul 23 22:30:28    |
      MSGID: 1:317/3 64b0cf95       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Researchers develop approach that can enable inexpensive mass       manufacturing of micro-LED displays         A continuous roller printing approach can precisely transfer thousands of       microscopic semiconductor devices in a single shot                Date:        July 13, 2023        Source:        Optica        Summary:        New research describes a continuous roller printing approach that        can precisely transfer thousands of microscopic semiconductor        devices in a single shot. This method paves the way to creating        large-scale arrays of optical components and could be used to        rapidly manufacture micro-LED displays.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Researchers have demonstrated a continuous roller printing process that       can pick up and transfer over 75,000 micrometer-scale semiconductor       devices in a single roll with very high accuracy. The new method paves       the way to creating large-scale arrays of optical components and could       be used to rapidly manufacture micro-LED displays.              Micro-LED display technology is of great interest because it can       accomplish highly accurate color rendering with high speed and resolution       while using little power. These displays can be applied in a wide range       of formats including smartphone screens, virtual and augmented reality       devices and large displays several meters across. For larger micro-LED       displays, in particular, the challenges of integrating millions of tiny       LEDs -- which are sometimes smaller than a grain of fine sand -- onto       an electronic control backplane are enormous.              "Transferring micrometer-scale semiconductor devices from their native       substrate to a variety of receiving platforms is a challenge being tackled       internationally by both academic research groups and industries," said       research team leader Eleni Margariti from the University of Strathclyde       in the UK. "Our roller-based printing process offers a way to achieve       this in a scalable manner while meeting the demanding accuracy necessary       for this application." In the journal Optical Materials Express,       the researchers report that their new roller technology can match the       designed device layout with an accuracy of less than 1 micron. The setup       is also inexpensive and simple enough to be constructed in locations       with limited resources.              "This printing process could also be used for other types of devices       including silicon and printed electronics such as transistors, sensors       and antennas for flexible and wearable electronics, smart packaging and       radio-frequency identification tags," said Margariti, who developed the       new printing process.              "It could also be useful for making photovoltaics and for biomedical       applications such as drug delivery systems, biosensors and tissue       engineering." Large-scale device transfer Today's semiconductor       devices are typically manufactured on wafers using growth techniques       that deposit exquisitely detailed, multi-layer semiconductor thin films       onto semiconductor substrates. Compatibility issues between these thin       film structures and the types of substrates suitable for this deposition       constrain the ways in which the devices can be used.              "We wanted to improve the transfer of large numbers of semiconductor       devices from one substrate to another to improve the performance and       scaling of electronic systems used in applications such as displays and       on-chip photonics, where the aim is to combine various materials that       manipulate light on a very small scale," said Margariti. "To be used for       large-scale manufacturing, it is crucial to use methods that can transfer       these devices efficiently, accurately and with minimal errors." The new       approach starts with an array of tiny devices that are loosely attached to       their growth substrate. The surface of a cylinder containing a slightly       sticky silicone polymer film is then rolled over the suspended array of       devices, allowing adhesive forces between the silicone and semiconductor       to detach the devices from their growth substrate and array them on       the cylinder drum. Because the printing process is continuous it can       be used to simultaneously print numerous devices, which makes it highly       efficient for large-scale production.              Highly accurate printing "By carefully selecting the properties of the       silicone and receiving substrate surface and the speed and mechanics       of the rolling process, the devices can be successfully rolled       over and released onto the receiver substrate while preserving the       spatially arrayed format they had on the original substrate," explained       Margariti. "We also developed a custom analysis method that scans the       printed sample for defects and provides the printing yield and positioning       accuracy in just minutes." The researchers tested the new approach       with gallium nitride on silicon (GaN/ Si) semiconductor structures. GaN       is the dominant semiconductor technology used for micro-LED displays,       and using silicon substrates facilitated the preparation of the devices       as suspended structures that could be picked up by the roller. They       were able to transfer more than 99% of the devices in an array of over       76,000 individual elements with a spatial precision below a micron with       no significant rotational errors.              Next, the researchers are working to further improve the accuracy of       the printing process while also scaling up the number of devices that       can be transferred at once. They also plan to test the method's ability       to combine different types of devices onto the same receiving platform       and determine if it can be used to print to specific locations of the       receiving platform.               * RELATED_TOPICS        o Matter_&_Energy        # Spintronics # Electronics # Technology #        Materials_Science        o Computers_&_Math        # Spintronics_Research # Mobile_Computing #        Computer_Science # Computer_Modeling        * RELATED_TERMS        o Integrated_circuit o Nanotechnology o Physics o Nanorobotics o        Absolute_zero o Nanoparticle o Science o Richter_magnitude_scale              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Overflowing_Cosmic_'Jug' * Ghost_Stars_in_Our_Galaxy *        Multiple_Ecosystems_in_Hot_Water * How_an_'AI-Tocracy'_Emerges        * Building_a_Better_Tree_With_CRISPR_Gene_Editing *        Unprecedented_Control_Of_Every_Finger_of_...               * Widespread_Death_of_Insects:_Air_Pollution        * Webb_Celebrates_First_Year_of_Science *        New_Parkinson's_Disease_Cell_Therapies *        Circular_DNA_Grabs_DNA_Repair_Mechanism:_...                     Trending Topics this week       ==========================================================================       SPACE_&_TIME Galaxies NASA Nebulae MATTER_&_ENERGY Technology       Materials_Science Nature_of_Water COMPUTERS_&_MATH Robotics       Artificial_Intelligence Information_Technology                     ==========================================================================              Strange & Offbeat       ==========================================================================       SPACE_&_TIME Rare,_Double-Lobe_Nebula_Resembles_Overflowing_Cosmic_'Jug'       New_Study_Reveals_Evidence_of_Diverse_Organic_Material_on_Mars       Training_Robots_How_to_Learn,_Make_Decisions_on_the_Fly       MATTER_&_ENERGY Fungi_Blaze_a_Trail_to_Fireproof_Cladding       Surgical_and_Engineering_Innovations_Enable_Unprecedented_Control_Over_Every       Finger_of_a_Bionic_Hand       Generative_AI_'Fools'_Scientists_With_Artificial_Data,_Bringing_Automated_Data       Analysis_Closer COMPUTERS_&_MATH       Capturing_the_Immense_Potential_of_Microscopic_DNA_for_Data_Storage       Revolutionary_Self-Sensing_Electric_Artificial_Muscles       Bees_Make_Decisions_Better_and_Faster_Than_We_Do,_for_the_Things_That_Matter_to       Them Story Source: Materials provided by Optica. Note: Content may be       edited for style and length.                     ==========================================================================       Journal Reference:        1. Eleni Margariti, Gemma Quinn, Dimitars Jevtics, Benoit Guilhabert,        Martin        D. Dawson, Michael J. Strain. Continuous roller transfer-printing        and automated metrology of >75,000 micro-LED pixels in a        single shot. Optical Materials Express, 2023; 13 (8): 2236 DOI:        10.1364/OME.483657       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230713142011.htm              --- up 1 year, 19 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca