Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,902 of 8,931    |
|    ScienceDaily to All    |
|    Titanium oxide material lets sunlight dr    |
|    13 Jul 23 22:30:28    |
      MSGID: 1:317/3 64b0cf92       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Titanium oxide material lets sunlight drive green hydrogen production        Stable photocatalyst material opens new possibilities for harvesting       hydrogen                Date:        July 13, 2023        Source:        Drexel University        Summary:        As part of ongoing efforts to develop materials that could enable        alternative energy sources, researchers have produced a titanium        oxide nanofilament material that can harness sunlight to unlock        the ubiquitous molecule's potential as a fuel source.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Clean energy plans, including the U.S. Infrastructure Investment Act's       "Clean Hydrogen Road Map," are counting on hydrogen as a fuel of the       future. But current hydrogen separation technology is still falling       short of efficiency and sustainability goals. As part of ongoing efforts       to develop materials that could enable alternative energy sources,       researchers in Drexel University's College of Engineering have produced a       titanium oxide nanofilament material that can harness sunlight to unlock       the ubiquitous molecule's potential as a fuel source.              The discovery offers an alternative to current methods that generate       greenhouse gas and require a great deal of energy. Photocatalysis,       a process that can split hydrogen from water using only sunlight,       has been explored for several decades, but has remained a more distant       consideration because the catalyst materials enabling the process can       only survive it for a day or two, which limits its long-term efficiency       and, as a result, its commercial viability.              Drexel's group, led by College of Engineering researchers Michel Barsoum,       PhD, and Hussein O. Badr, PhD, in collaboration with scientists from       the National Institute of Materials Physics in Bucharest, Romania,       recently reported its discovery of photocatalytic titanium oxide-based,       one-dimensional nanofilament material that can help sunlight glean       hydrogen from water for months at a time.              Their article "Photo-stable, 1D-nanofilaments TiO2-based lepidocrocite       for photocatalytic hydrogen production in water-methanol mixtures,"       published in the journal Matter,presents a sustainable and affordable       path for creating hydrogen fuel, according to the authors.              "Our titanium oxide one-dimensional nanofilaments photocatalyst showed       activity that is substantially higher -- by an order of magnitude --       than its commercial titanium oxide counterpart," Hussein said. "Moreover,       our photocatalyst was found to be stable in water for 6 months -- these       results represent a new generation of photocatalysts that can finally       launch the long-awaited transition of nanomaterials from lab to market."       Barsoum's group discovered hydroxides-derived nanostructures (HDNs) --       the family of titanium oxide nanomaterials, to which the photocatalytic       material belongs -- two years ago, as it was working out a new process       for making MXene materials, which Drexel researchers are exploring for       a number of applications.              Instead of using the standard, caustic hydrofluoric acid to chemically       etch out the layered two-dimensional MXenes from a material called a       MAX phase, the group used an aqueous solution of a common organic base,       tetramethylammonium hydroxide.              But rather than producing a MXene, the reaction produced thin, fibrous       titanium oxide-based strands -- that the team would come to find possessed       the ability to facilitate the chemical reaction that splits hydrogen       out of water molecules when exposed to sunlight.              "Titanium-oxide materials have previously demonstrated photocatalytic       abilities, so testing our new nanofilaments for this property was a       natural part of our work," he said. "But we did not expect to find       that not only are they photocatalytic, but they are extremely stable       and productive catalysts for hydrogen production from water-methanol       mixtures." The group tested five photocatalyst materials -- titanium       oxide-based HDNs, derived from various low-cost and readily available       precursor materials -- and compared them to Evonik Aeroxide's titanium       oxide material, called P25, which is widely accepted as the photocatalyst       material closest to commercial viability.              Each material was submerged in a water-methanol solution and exposed       to ultraviolet-visible light produced by a tunable illuminator lamp       that mimics the spectrum of the sun. The researchers measured both the       amount of hydrogen produced and duration of activity in each reactor       assembly, as well as the number of photons from the light that produced       hydrogen when they interacted with the catalyst material -- a metric       for understanding the catalytic efficiency of each material.              They found that all five titanium oxide-based HDNs photocatalysts       performed more efficiently at using sunlight to produce hydrogen than       the P25 material.              One of them, derived from binary titanium carbide, is 10 times more       efficient than P25 at enabling photons to split off hydrogen from       the water.              This improvement is quite significant on its own, the team reports, but       an even more significant finding was that the material remained active       after more than 180 days of exposure to the simulated sunlight.              "The fact that our materials appear to possibly be thermodynamically       stable and photochemically active in water-methanol mixtures for extended       durations cannot be overemphasized," Hussein said. "Since our material is       not costly to make, easy to scale up, and incredibly stable in water, its       applications in various photocatalytic processes become worth exploring."       The next step for the research is better understanding why the material       behaves this way, so it can be further optimized as a photocatalyst. The       team's current theory posits that the one-dimensional nature and       theoretical high surface area of the material contribute to its sustained       activity, but additional testing is needed to confirm these suggestions.              The group is also working to find other additives, aside from methanol,       to serve as "hole quenchers" -- chemicals that prevent the water-splitting       reaction from reversing course, which is a common occurrence due to the       somewhat chaotic nature of photocatalytic reactions.              The results are so promising that the group has founded a green hydrogen       startup around the technology and is working with the Drexel Office of       Innovation and the National Science Foundation's Innovation Corps to       move toward commercializing it.              "We are very excited about the possibilities of this discovery,"       Barsoum said.              "The world needs massive new clean fuels that can supplant fossil       fuels. We believe this material can unlock the potential of green       hydrogen." In addition, the group is exploring a number of other       applications for HDNs, including using them in batteries, solar cells,       water purification and medical treatments. Their ability to be easily       and safely produced in large quantities, sets HDNs apart from other       nanomaterials, which opens them to a variety of possible uses, according       to Hussein.              "Our HDNs family of nanostructures continue to impress the very       different communities with whom we are collaborating. These titanium       oxide nanofilaments can be used for number of applications including       water purification, dye degradation, perovskite solar cells, lithium-ion       and lithium-sulfur batteries, urea dialysis and breast cancer therapy,       among many more."        * RELATED_TOPICS        o Matter_&_Energy        # Alternative_Fuels # Materials_Science #        Energy_and_Resources # Nature_of_Water        o Earth_&_Climate        # Energy_and_the_Environment # Water # Renewable_Energy        # Sustainability        * RELATED_TERMS        o Energy_development o Hydroelectricity o        Alternative_fuel_vehicle o Alcohol_fuel o Pyroelectricity o        Triboelectric_effect o Lighting o Glass              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Overflowing_Cosmic_'Jug' * Ghost_Stars_in_Our_Galaxy *        Multiple_Ecosystems_in_Hot_Water * How_an_'AI-Tocracy'_Emerges        * Building_a_Better_Tree_With_CRISPR_Gene_Editing *        Unprecedented_Control_Of_Every_Finger_of_...               * Widespread_Death_of_Insects:_Air_Pollution        * Webb_Celebrates_First_Year_of_Science *        New_Parkinson's_Disease_Cell_Therapies *        Circular_DNA_Grabs_DNA_Repair_Mechanism:_...                     Trending Topics this week       ==========================================================================       SPACE_&_TIME Galaxies NASA Nebulae MATTER_&_ENERGY Technology       Materials_Science Nature_of_Water COMPUTERS_&_MATH Robotics       Artificial_Intelligence Information_Technology                     ==========================================================================              Strange & Offbeat       ==========================================================================       SPACE_&_TIME Rare,_Double-Lobe_Nebula_Resembles_Overflowing_Cosmic_'Jug'       New_Study_Reveals_Evidence_of_Diverse_Organic_Material_on_Mars       Training_Robots_How_to_Learn,_Make_Decisions_on_the_Fly       MATTER_&_ENERGY Fungi_Blaze_a_Trail_to_Fireproof_Cladding       Surgical_and_Engineering_Innovations_Enable_Unprecedented_Control_Over_Every       Finger_of_a_Bionic_Hand       Generative_AI_'Fools'_Scientists_With_Artificial_Data,_Bringing_Automated_Data       Analysis_Closer COMPUTERS_&_MATH       Capturing_the_Immense_Potential_of_Microscopic_DNA_for_Data_Storage       Revolutionary_Self-Sensing_Electric_Artificial_Muscles       Bees_Make_Decisions_Better_and_Faster_Than_We_Do,_for_the_Things_That_Matter_to       Them Story Source: Materials provided by Drexel_University. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Hussein O. Badr, Varun Natu, Ștefan Neațu, Florentina        Neațu, Andrei Kuncser, Arpad M. Rostas, Matthew Racey,        Michel W.               Barsoum, Mihaela Florea. Photo-stable, 1D-nanofilaments        TiO2-based lepidocrocite for photocatalytic hydrogen        production in water-methanol mixtures. Matter, 2023; DOI:        10.1016/j.matt.2023.05.026       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230713142013.htm              --- up 1 year, 19 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca