home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   EARTH      Uhh, that 3rd rock from the sun?      8,931 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 8,902 of 8,931   
   ScienceDaily to All   
   Titanium oxide material lets sunlight dr   
   13 Jul 23 22:30:28   
   
   MSGID: 1:317/3 64b0cf92   
   PID: hpt/lnx 1.9.0-cur 2019-01-08   
   TID: hpt/lnx 1.9.0-cur 2019-01-08   
    Titanium oxide material lets sunlight drive green hydrogen production   
    Stable photocatalyst material opens new possibilities for harvesting   
   hydrogen    
      
     Date:   
         July 13, 2023   
     Source:   
         Drexel University   
     Summary:   
         As part of ongoing efforts to develop materials that could enable   
         alternative energy sources, researchers have produced a titanium   
         oxide nanofilament material that can harness sunlight to unlock   
         the ubiquitous molecule's potential as a fuel source.   
      
      
         Facebook Twitter Pinterest LinkedIN Email   
      
   ==========================================================================   
   FULL STORY   
   ==========================================================================   
   Clean energy plans, including the U.S. Infrastructure Investment Act's   
   "Clean Hydrogen Road Map," are counting on hydrogen as a fuel of the   
   future. But current hydrogen separation technology is still falling   
   short of efficiency and sustainability goals. As part of ongoing efforts   
   to develop materials that could enable alternative energy sources,   
   researchers in Drexel University's College of Engineering have produced a   
   titanium oxide nanofilament material that can harness sunlight to unlock   
   the ubiquitous molecule's potential as a fuel source.   
      
   The discovery offers an alternative to current methods that generate   
   greenhouse gas and require a great deal of energy. Photocatalysis,   
   a process that can split hydrogen from water using only sunlight,   
   has been explored for several decades, but has remained a more distant   
   consideration because the catalyst materials enabling the process can   
   only survive it for a day or two, which limits its long-term efficiency   
   and, as a result, its commercial viability.   
      
   Drexel's group, led by College of Engineering researchers Michel Barsoum,   
   PhD, and Hussein O. Badr, PhD, in collaboration with scientists from   
   the National Institute of Materials Physics in Bucharest, Romania,   
   recently reported its discovery of photocatalytic titanium oxide-based,   
   one-dimensional nanofilament material that can help sunlight glean   
   hydrogen from water for months at a time.   
      
   Their article "Photo-stable, 1D-nanofilaments TiO2-based lepidocrocite   
   for photocatalytic hydrogen production in water-methanol mixtures,"   
   published in the journal Matter,presents a sustainable and affordable   
   path for creating hydrogen fuel, according to the authors.   
      
   "Our titanium oxide one-dimensional nanofilaments photocatalyst showed   
   activity that is substantially higher -- by an order of magnitude --   
   than its commercial titanium oxide counterpart," Hussein said. "Moreover,   
   our photocatalyst was found to be stable in water for 6 months -- these   
   results represent a new generation of photocatalysts that can finally   
   launch the long-awaited transition of nanomaterials from lab to market."   
   Barsoum's group discovered hydroxides-derived nanostructures (HDNs) --   
   the family of titanium oxide nanomaterials, to which the photocatalytic   
   material belongs -- two years ago, as it was working out a new process   
   for making MXene materials, which Drexel researchers are exploring for   
   a number of applications.   
      
   Instead of using the standard, caustic hydrofluoric acid to chemically   
   etch out the layered two-dimensional MXenes from a material called a   
   MAX phase, the group used an aqueous solution of a common organic base,   
   tetramethylammonium hydroxide.   
      
   But rather than producing a MXene, the reaction produced thin, fibrous   
   titanium oxide-based strands -- that the team would come to find possessed   
   the ability to facilitate the chemical reaction that splits hydrogen   
   out of water molecules when exposed to sunlight.   
      
   "Titanium-oxide materials have previously demonstrated photocatalytic   
   abilities, so testing our new nanofilaments for this property was a   
   natural part of our work," he said. "But we did not expect to find   
   that not only are they photocatalytic, but they are extremely stable   
   and productive catalysts for hydrogen production from water-methanol   
   mixtures."  The group tested five photocatalyst materials -- titanium   
   oxide-based HDNs, derived from various low-cost and readily available   
   precursor materials -- and compared them to Evonik Aeroxide's titanium   
   oxide material, called P25, which is widely accepted as the photocatalyst   
   material closest to commercial viability.   
      
   Each material was submerged in a water-methanol solution and exposed   
   to ultraviolet-visible light produced by a tunable illuminator lamp   
   that mimics the spectrum of the sun. The researchers measured both the   
   amount of hydrogen produced and duration of activity in each reactor   
   assembly, as well as the number of photons from the light that produced   
   hydrogen when they interacted with the catalyst material -- a metric   
   for understanding the catalytic efficiency of each material.   
      
   They found that all five titanium oxide-based HDNs photocatalysts   
   performed more efficiently at using sunlight to produce hydrogen than   
   the P25 material.   
      
   One of them, derived from binary titanium carbide, is 10 times more   
   efficient than P25 at enabling photons to split off hydrogen from   
   the water.   
      
   This improvement is quite significant on its own, the team reports, but   
   an even more significant finding was that the material remained active   
   after more than 180 days of exposure to the simulated sunlight.   
      
   "The fact that our materials appear to possibly be thermodynamically   
   stable and photochemically active in water-methanol mixtures for extended   
   durations cannot be overemphasized," Hussein said. "Since our material is   
   not costly to make, easy to scale up, and incredibly stable in water, its   
   applications in various photocatalytic processes become worth exploring."   
   The next step for the research is better understanding why the material   
   behaves this way, so it can be further optimized as a photocatalyst. The   
   team's current theory posits that the one-dimensional nature and   
   theoretical high surface area of the material contribute to its sustained   
   activity, but additional testing is needed to confirm these suggestions.   
      
   The group is also working to find other additives, aside from methanol,   
   to serve as "hole quenchers" -- chemicals that prevent the water-splitting   
   reaction from reversing course, which is a common occurrence due to the   
   somewhat chaotic nature of photocatalytic reactions.   
      
   The results are so promising that the group has founded a green hydrogen   
   startup around the technology and is working with the Drexel Office of   
   Innovation and the National Science Foundation's Innovation Corps to   
   move toward commercializing it.   
      
   "We are very excited about the possibilities of this discovery,"   
   Barsoum said.   
      
   "The world needs massive new clean fuels that can supplant fossil   
   fuels. We believe this material can unlock the potential of green   
   hydrogen."  In addition, the group is exploring a number of other   
   applications for HDNs, including using them in batteries, solar cells,   
   water purification and medical treatments. Their ability to be easily   
   and safely produced in large quantities, sets HDNs apart from other   
   nanomaterials, which opens them to a variety of possible uses, according   
   to Hussein.   
      
   "Our HDNs family of nanostructures continue to impress the very   
   different communities with whom we are collaborating. These titanium   
   oxide nanofilaments can be used for number of applications including   
   water purification, dye degradation, perovskite solar cells, lithium-ion   
   and lithium-sulfur batteries, urea dialysis and breast cancer therapy,   
   among many more."   
       * RELATED_TOPICS   
             o Matter_&_Energy   
                   # Alternative_Fuels # Materials_Science #   
                   Energy_and_Resources # Nature_of_Water   
             o Earth_&_Climate   
                   # Energy_and_the_Environment # Water # Renewable_Energy   
                   # Sustainability   
       * RELATED_TERMS   
             o Energy_development o Hydroelectricity o   
             Alternative_fuel_vehicle o Alcohol_fuel o Pyroelectricity o   
             Triboelectric_effect o Lighting o Glass   
      
   ==========================================================================   
      
    Print   
      
    Email   
      
    Share   
   ==========================================================================   
   ****** 1 ****** ***** 2 ***** **** 3 ****   
   *** 4 *** ** 5 ** Breaking this hour   
   ==========================================================================   
       * Overflowing_Cosmic_'Jug' * Ghost_Stars_in_Our_Galaxy *   
       Multiple_Ecosystems_in_Hot_Water * How_an_'AI-Tocracy'_Emerges   
       * Building_a_Better_Tree_With_CRISPR_Gene_Editing *   
       Unprecedented_Control_Of_Every_Finger_of_...   
      
       * Widespread_Death_of_Insects:_Air_Pollution   
       * Webb_Celebrates_First_Year_of_Science *   
       New_Parkinson's_Disease_Cell_Therapies *   
       Circular_DNA_Grabs_DNA_Repair_Mechanism:_...   
      
      
   Trending Topics this week   
   ==========================================================================   
   SPACE_&_TIME Galaxies NASA Nebulae MATTER_&_ENERGY Technology   
   Materials_Science Nature_of_Water COMPUTERS_&_MATH Robotics   
   Artificial_Intelligence Information_Technology   
      
      
   ==========================================================================   
      
   Strange & Offbeat   
   ==========================================================================   
   SPACE_&_TIME Rare,_Double-Lobe_Nebula_Resembles_Overflowing_Cosmic_'Jug'   
   New_Study_Reveals_Evidence_of_Diverse_Organic_Material_on_Mars   
   Training_Robots_How_to_Learn,_Make_Decisions_on_the_Fly   
   MATTER_&_ENERGY Fungi_Blaze_a_Trail_to_Fireproof_Cladding   
   Surgical_and_Engineering_Innovations_Enable_Unprecedented_Control_Over_Every   
   Finger_of_a_Bionic_Hand   
   Generative_AI_'Fools'_Scientists_With_Artificial_Data,_Bringing_Automated_Data   
   Analysis_Closer COMPUTERS_&_MATH   
   Capturing_the_Immense_Potential_of_Microscopic_DNA_for_Data_Storage   
   Revolutionary_Self-Sensing_Electric_Artificial_Muscles   
   Bees_Make_Decisions_Better_and_Faster_Than_We_Do,_for_the_Things_That_Matter_to   
   Them Story Source: Materials provided by Drexel_University. Note:   
   Content may be edited for style and length.   
      
      
   ==========================================================================   
   Journal Reference:   
      1. Hussein O. Badr, Varun Natu, Ștefan Neațu, Florentina   
         Neațu, Andrei Kuncser, Arpad M. Rostas, Matthew Racey,   
         Michel W.   
      
         Barsoum, Mihaela Florea. Photo-stable, 1D-nanofilaments   
         TiO2-based lepidocrocite for photocatalytic hydrogen   
         production in water-methanol mixtures. Matter, 2023; DOI:   
         10.1016/j.matt.2023.05.026   
   ==========================================================================   
      
   Link to news story:   
   https://www.sciencedaily.com/releases/2023/07/230713142013.htm   
      
   --- up 1 year, 19 weeks, 3 days, 10 hours, 50 minutes   
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)   
   SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114   
   SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854   
   SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35   
   PATH: 317/3 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca