Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,900 of 8,931    |
|    ScienceDaily to All    |
|    Biomaterial-delivered one-two punch boos    |
|    13 Jul 23 22:30:28    |
      MSGID: 1:317/3 64b0cf8c       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Biomaterial-delivered one-two punch boosts cancer immunotherapy                Date:        July 13, 2023        Source:        Wyss Institute for Biologically Inspired Engineering at Harvard        Summary:        In contrast to different blood cancers, the effectiveness of        adoptive T cell therapies in the treatment of solid tumors, which        comprise about 90% of all tumors, has been very limited because of        several formidable barriers. Now immune-engineers have developed a        novel biomaterials-based immunotherapy approach named SIVET that        has the potential to break down these barriers. The injectable        biomaterial enables both: the local delivery of antigen-specific        adoptively transferred T cells directly to tumor sites and their        prolonged activation, as well as a broader engagement of the        host immune system to provide much longer-lasting anti- tumor        effects against tumor cells carrying new antigens. Validated in        mice carrying melanomas, a particularly aggressive type of solid        tumor, SIVET enabled the fast shrinking of tumors and long-term        protection against them.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Cancer immunotherapy has brought major improvement in patient survival       and quality of life, especially with the success of adoptive T cell and       immune checkpoint inhibitor therapies. Unfortunately, in contrast to       different blood cancers, the effectiveness of adoptive T cell therapies       in the treatment of solid tumors, which comprise about 90% of all tumors,       has been very limited because of several formidable barriers.              In adoptive T cell therapies, a patient's T cells with cytotoxic potential       are engineered outside the body so that they can bind specific features       (antigens) on the surface of tumor cells, which converts them into       tumor-killing cells.              However, after being reinfused into the donor patient's blood circulation,       they have to travel long distances to reach a solid tumor with only a       fraction of them ever arriving there. On-site, they need to infiltrate       the often difficult- to-penetrate tumor mass, while their cytotoxic       activity is suppressed by tumor cells and their surrounding tissue       microenvironment. In addition, the further solid tumors grow, the more       heterogenous their cell composition becomes, which also includes tumor       cells' repertoire of surface antigens, and thus allows them to "escape"       the attack of adoptively transferred T cells.              Now, a team of immune-engineers at the Wyss Institute for Biologically       Inspired Engineering at Harvard University and Harvard John A. Paulson       School of Engineering and Applied Sciences (SEAS) have developed a       novel biomaterials- based immunotherapy approach named SIVET (short for       "synergistic in situ vaccination enhanced T cell") that has the potential       to break down these barriers. The injectable biomaterial enables both: the       local delivery of antigen-specific adoptively transferred T cells directly       to tumor sites and their prolonged activation, as well as a broader       engagement of the host immune system to provide much longer-lasting       anti-tumor effects against tumor cells carrying new antigens. Validated in       mice carrying melanomas, a particularly aggressive type of solid tumor,       SIVET enabled the fast shrinking of tumors and long-term protection       against them. The findings are published in Nature Communications.              "In the SIVET approach, we essentially combined fast-acting adoptive       T cell therapy with long-term protective cancer vaccine technology in       a locally delivered integrated biomaterial. Advancing this approach       towards patient settings could help addresses several limitations of       current immunotherapies and offers new inroads into the treatment of       solid tumors," said senior author David Mooney, Ph.D., who is a Founding       Core Faculty member at the Wyss Institute and the Robert P. Pinkas Family       Professor of Bioengineering at SEAS.              Mooney leads the Wyss Institute's Immunomaterials Platform and       co-leads the NIH-funded Immuno-Engineering to Improve Immunotherapy       (i3) Centercoordinated at the Wyss Institute and focused on creating       biomaterials-driven approaches to enable anti-cancer immunotherapy in       solid tumor settings.              Biomaterial convergences In extensive previous work, Mooney's team had       pioneered biomaterial-based cancer vaccines that are able to program key       immune-orchestrating dendritic cells, known as antigen-presenting cells       (APCs), into tumor-fighting cells in vivo. Despite the cancer vaccines       being able to provide broad therapeutic and prophylactic benefits,       their tumor-directed effects take time to manifest in the body. On       the other hand, patient-specific adoptively transferred T cells are       ready-made to attack tumor cells upon first contact but produce rather       short-lived responses.              "Our new platform fully leverages our expertise with adoptive T cell and       cancer vaccine technologies. Combining the best of these two worlds in       a multi-pronged biomaterial-based approach allows the fast debulking of       existing tumor masses while engaging the immune system on a much deeper       level through the localized delivery, concentration, and activation       of diverse tumor-fighting immune cells," said co-first author Kwasi       Adu-Berchie, Ph.D., who completed his Ph.D.              in Mooney's lab and is currently a Translational Immunotherapy Scientist       at the Wyss Institute.              Adu-Berchie, Mooney, and the team developed a cryogel biomaterial that       contains collagen and alginate polymers cross-linked into a 3-dimensional       porous scaffold. While the alginate provides the biomaterial with       structural support, collagen serves to provide ligands needed for T cell       trafficking. Following injection of the engineered T cell depot close       to a tumor site, the compressed biomaterial recovers its original shape       and starts releasing the cytokine interleukin 2 (IL2) to facilitate the       expansion of the delivered T cells, which move out of the biomaterial       and onto the tumor to carry out an attack.              In addition, the biomaterial releases a second cytokine, abbreviated as       GMCSF, which attracts host APCs into the porous scaffold that then also       become concentrated and activated with the help of an adjuvant molecule       known as CpG close to the tumor. The activated APCs also infiltrate the       tumor mass where they take up new antigens created by dying tumor cells       that disintegrate as a result of the T cell attack. The APCs then migrate       to nearby lymph nodes where they orchestrate a broader vaccine response       by presenting processed antigens to other immune cell types, including       other cytotoxic T cells that attack the tumor in consecutive waves,       as well as memory T cells that stand by for future tumor recurrences.              The researchers investigated SIVET in a mouse model carrying melanoma       tumors and found that the multi-functional biomaterial enabled better       control over the tumors than the same adoptively transferred T cells       injected directly into the tumor site or infused into the blood stream of       the animals. SIVETs enabled the delivered T cells to remain active longer       and minimized the exhaustion of all T cells in the tumor microenvironment       when compared to control conditions.              "Through their vaccine component, SIVETs trained the immune system to       reject melanoma tumors for significantly prolonged periods of time, and       thus allowed the animals to survive for significantly longer than animals       that received any of our control treatments. This likely was facilitated       by the biomaterial's ability to prevent the growth of tumor cells that       escape the attack of adoptively transferred T cells due to their loss       of the initially targeted antigen," said Adu-Berchie. "Identifying a       tumor-specific antigen against which potent donor-specific T cells can       be generated for adoptive transfer could provide SIVETs with enough to       go on to initiate a tumor attack on a much broader front and scale.              "This study is a beautiful convergence of two powerful immunotherapy       approaches that are programmed in the body to synergize with each       other. This work once again demonstrates the power of taking an       unconventional trans-disciplinary approach -- in this case, combining       strategies from materials science and tissue engineering with immunology       -- to create novel and more powerful therapeutics for the eradication of       solid cancers," said Wyss Founding Director Donald Ingber, M.D., Ph.D.,       who is also the Judah Folkman Professor of Vascular Biology at Harvard       Medical School and Boston Children's Hospital, and the Hansjo"rg Wyss       Professor of Bioinspired Engineering at SEAS.              The study is also authored by other past and present members of       Mooney's group, including Joshua Brockman, Yutong Liu, Tania To, David       Zhang, Alexander Najibi, Yoav Binenbaum, Alexander Stafford, Nikolaus       Dimitrakakis, Miguel Sobral, and Maxence Dellacherie. It was supported by       grants from the National Institutes of Health (award #U54 CA244726 and       #U01 CA214369), National Science Foundation (award #MRSEC DMR-1420570),       and Food and Drug Administration (award #R01 FD006589), as well as the       National Cancer Institute (award #5K00CA234959).               * RELATED_TOPICS        o Health_&_Medicine        # Brain_Tumor # Cancer # Lung_Cancer # Immune_System #        Lymphoma # Skin_Cancer # Colon_Cancer # Ovarian_Cancer        * RELATED_TERMS        o Monoclonal_antibody_therapy o Cancer o T_cell o Brain_tumor        o Immune_system o Tumor_suppressor_gene o Natural_killer_cell        o BRCA1              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Overflowing_Cosmic_'Jug' * Ghost_Stars_in_Our_Galaxy *        Multiple_Ecosystems_in_Hot_Water * How_an_'AI-Tocracy'_Emerges        * Building_a_Better_Tree_With_CRISPR_Gene_Editing *        Unprecedented_Control_Of_Every_Finger_of_...               * Widespread_Death_of_Insects:_Air_Pollution        * Webb_Celebrates_First_Year_of_Science *        New_Parkinson's_Disease_Cell_Therapies *        Circular_DNA_Grabs_DNA_Repair_Mechanism:_...                     Trending Topics this week       ==========================================================================       HEALTH_&_MEDICINE Brain_Tumor Nervous_System Stem_Cells MIND_&_BRAIN       Intelligence Behavior Brain_Injury LIVING_&_WELL Behavior Healthy_Aging       Child_Development                     ==========================================================================              Strange & Offbeat       ==========================================================================       HEALTH_&_MEDICINE       Surgical_and_Engineering_Innovations_Enable_Unprecedented_Control_Over_Every       Finger_of_a_Bionic_Hand       Capturing_the_Immense_Potential_of_Microscopic_DNA_for_Data_Storage       Revolutionary_Self-Sensing_Electric_Artificial_Muscles MIND_&_BRAIN       The_Sound_of_Silence?_Researchers_Demonstrate_People_Hear_It       AI_Tests_Into_Top_1%_for_Original_Creative_Thinking       Everyone's_Brain_Has_a_Pain_Fingerprint_--_New_Research_Has_Revealed_for_the       First_Time LIVING_&_WELL       These_Lollipops_Could_'Sweeten'_Diagnostic_Testing_for_Kids_and_Adults_Alike       Grocery_Store_Carts_Set_to_Help_Diagnose_Common_Heart_Rhythm_Disorder_and       Prevent_Stroke Illusions_Are_in_the_Eye,_Not_the_Mind       Story Source: Materials provided       by Wyss_Institute_for_Biologically_Inspired_Engineering_at       Harvard. Original written by Benjamin Boettner. Note: Content may be       edited for style and length.                     ==========================================================================       Journal Reference:        1. Kwasi Adu-Berchie, Joshua M. Brockman, Yutong Liu, Tania W. To,        David K.               Y. Zhang, Alexander J. Najibi, Yoav Binenbaum, Alexander Stafford,        Nikolaos Dimitrakakis, Miguel C. Sobral, Maxence O. Dellacherie,        David J.               Mooney. Adoptive T cell transfer and host antigen-presenting cell        recruitment with cryogel scaffolds promotes long-term protection        against solid tumors. Nature Communications, 2023; 14 (1) DOI:        10.1038/s41467- 023-39330-7       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230713142018.htm              --- up 1 year, 19 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca