Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,875 of 8,931    |
|    ScienceDaily to All    |
|    A foundation that fits just right gives     |
|    12 Jul 23 22:30:26    |
      MSGID: 1:317/3 64af7e03       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        A foundation that fits just right gives superconducting nickelates a       boost         It irons out wrinkles in thin films of these novel superconductors so       scientists can see their true nature for the first time                Date:        July 12, 2023        Source:        DOE/SLAC National Accelerator Laboratory        Summary:        Researchers made thin films of an exciting new nickel oxide        superconductor that are free of extended defects. This improved        the material's ability to conduct electricity with no loss and        gave them the first clear view of its properties. They discovered        that this nickelate is more like the superconducting cuprates than        previously thought.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Researchers at the Department of Energy's SLAC National Accelerator       Laboratory and Stanford University say they've found a way to make thin       films of an exciting new nickel oxide superconductor that are free of       extended defects.              Not only does this improve the material's ability to conduct electricity       with no loss, they said, but it also allows them to discover its true       nature and properties, both in and out of the superconducting state,       for the first time.              Their first look at a superconducting nickel oxide, or nickelate,       that does not have defects revealed that it is more like the cuprates       - which hold the world's high-temperature record for unconventional       superconductivity at normal pressures -- than previously thought. For       instance, when the nickelate is tweaked to optimize its superconductivity       and then heated above its superconducting temperature, its resistance       to the flow of electric current increases in a linear fashion, just as       in cuprates.              Those striking similarities, they said, may mean these two very different       materials achieve superconductivity in much the same way.              It's the latest step in a 35-year quest to develop superconductors that       can operate at close to room temperature, which would revolutionize       electronics, transportation, power transmission and other technologies       by allowing them to operate without energy-wasting electrical resistance.              The research team, led by Harold Hwang, director of the Stanford Institute       for Materials and Energy Sciences (SIMES) at SLAC, described their work       today in the journal Nature.              "Nickelate films are really unstable, and until now our efforts to       stabilize them on top of other materials have produced defects that are       like speed bumps for electrons," said Kyuho Lee, a SIMES postdoctoral       researcher who contributed to the discovery of superconductivity in       nickelates four years ago and has been working on them ever since.              "These quality issues have led to many debates and open questions about       nickelate properties, with research groups reporting widely varying       results," Lee said. "So eliminating the defects is a significant       breakthrough. It means we can finally address the underlying physics       behind these materials and behind unconventional superconductivity       in general." Jenga chemistry and a just-right fit The defects, which       are a bit like misaligned zipper teeth, arise from the same innovative       process that allowed Hwang's team to create and stabilize a nickelate       film in the first place.              They started by making a common material known as perovskite. They       "doped" it to change its electrical conductivity, then exposed it to a       chemical that deftly removed layers of oxygen atoms from its molecular       structure, much like removing a stick from a tower of Jenga blocks. With       the oxygen layers gone, the film settled into a new structure -- known       as an infinite-layer nickelate -that can host superconductivity.              The atomic latticework of this new structure occupied a slightly bigger       surface area than the original. With this in mind, they had built the       film on a foundation, or substrate, that would be a good fit for the       finished, spread-out product, Lee said.              But it didn't match the atomic lattice of the starting material, which       developed defects as it tried to fit comfortably onto the substrate --       and those imperfections carried through to the finished nickelate.              Hwang said it's as if two friends of different sizes had to share a       coat. If the coat fit the smaller friend perfectly, the larger one would       have a hard time zipping it up. If it fit the larger friend perfectly,       it would hang like a tent on the smaller one and let the cold in. An       in-between size might not be the best fit for either of them, but it's       close enough to keep them both warm and happy.              That's the solution Lee and his colleagues pursued.              In a series of meticulous experiments, they used a substrate that was       like the in-between coat. The atomic structure of its surface was a       close enough fit for both the starting and ending materials that the       finished nickelate came out defect-free. Lee said the team is already       starting to see some interesting physics in the nickelate now that the       system is much cleaner.              "What this means," Hwang said, "is that we are getting closer and       closer to measuring the intrinsic properties of these materials. And       by sharing the details of how to make defect-free nickelates, we hope       to benefit the field as a whole." Researchers from Cornell University       contributed to this work, which was funded by the DOE Office of Science       and the Gordon and Betty Moore Foundation's Emergent Phenomena in Quantum       Systems Initiative.               * RELATED_TOPICS        o Matter_&_Energy        # Physics # Materials_Science # Energy_Technology #        Quantum_Physics        o Computers_&_Math        # Spintronics_Research # Computer_Science # Communications        * RELATED_TERMS        o Periodic_table o Nickel o Noble_gas o Raney_nickel o        Triboelectric_effect o Fullerene o Metal o Robot              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Salinity_Changes_Threatening_Marine_Ecosystems *        Plastic_Pollution_On_Reefs_Mostly_from_Fishing        * Detailed_Map_of_the_Heart *        Microplastics_Contamination_in_Lakes_and_...               * Diverse_Organic_Material_On_Mars *        How_the_Immune_System_Can_Alter_Our_Behavior *        Ocean's_Color_Is_Changing_Due_to_Climate_Change *        Start_of_Anthropocene_Epoch:_Canadian_Lake_...               * Pump_Powers_Soft_Robots,_Makes_Cocktails *        Rat_Poison_--_Neurotoxicant_--_In_Birds_of_Prey              Trending Topics this week       ==========================================================================       SPACE_&_TIME Mars Space_Missions Big_Bang MATTER_&_ENERGY       Nature_of_Water Civil_Engineering Medical_Technology COMPUTERS_&_MATH       Artificial_Intelligence Robotics Neural_Interfaces                     ==========================================================================              Strange & Offbeat       ==========================================================================       SPACE_&_TIME       New_Study_Reveals_Evidence_of_Diverse_Organic_Material_on_Mars       Training_Robots_How_to_Learn,_Make_Decisions_on_the_Fly       Reinventing_Cosmology:_New_Research_Puts_Age_of_Universe_at_26.7_--_Not_13.7_-       -_Billion_Years MATTER_&_ENERGY Pump_Powers_Soft_Robots,_Makes_Cocktails       Capturing_the_Immense_Potential_of_Microscopic_DNA_for_Data_Storage       Revolutionary_Self-Sensing_Electric_Artificial_Muscles COMPUTERS_&_MATH       Bees_Make_Decisions_Better_and_Faster_Than_We_Do,_for_the_Things_That_Matter_to       Them Number_Cruncher_Calculates_Whether_Whales_Are_Acting_Weirdly       AI_Tests_Into_Top_1%_for_Original_Creative_Thinking Story Source:       Materials provided by DOE/SLAC_National_Accelerator_Laboratory. Original       written by Glennda Chui. Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Kyuho Lee, Bai Yang Wang, Motoki Osada, Berit H. Goodge, Tiffany        C. Wang,        Yonghun Lee, Shannon Harvey, Woo Jin Kim, Yijun Yu,        Chaitanya Murthy, Srinivas Raghu, Lena F. Kourkoutis, Harold        Y. Hwang. Linear-in- temperature resistivity for optimally        superconducting (Nd,Sr)NiO2.               Nature, 2023; 619 (7969): 288 DOI: 10.1038/s41586-023-06129-x       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230712124614.htm              --- up 1 year, 19 weeks, 2 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca