Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,855 of 8,931    |
|    ScienceDaily to All    |
|    Revolutionary self-sensing electric arti    |
|    11 Jul 23 22:30:30    |
      MSGID: 1:317/3 64ae2c74       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Revolutionary self-sensing electric artificial muscles                Date:        July 11, 2023        Source:        Queen Mary University of London        Summary:        Researchers have made groundbreaking advancements in bionics with        the development of a new electric variable-stiffness artificial        muscle. This innovative technology possesses self-sensing        capabilities and has the potential to revolutionize soft robotics        and medical applications. The artificial muscle seamlessly        transitions between soft and hard states, while also sensing forces        and deformations. With flexibility and stretchability similar to        natural muscle, it can be integrated into intricate soft robotic        systems and adapt to various shapes. By adjusting voltages,        the muscle rapidly changes its stiffness and can monitor its own        deformation through resistance changes. The fabrication process is        simple and reliable, making it ideal for a range of applications,        including aiding individuals with disabilities or patients in        rehabilitation training.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Researchers from Queen Mary University of London have made groundbreaking       advancements in bionics with the development of a new electric variable-       stiffness artificial muscle. Published in Advanced Intelligent Systems,       this innovative technology possesses self-sensing capabilities and has the       potential to revolutionize soft robotics and medical applications. The       artificial muscle seamlessly transitions between soft and hard states,       while also sensing forces and deformations. With flexibility and       stretchability similar to natural muscle, it can be integrated into       intricate soft robotic systems and adapt to various shapes. By adjusting       voltages, the muscle rapidly changes its stiffness and can monitor its own       deformation through resistance changes. The fabrication process is simple       and reliable, making it ideal for a range of applications, including       aiding individuals with disabilities or patients in rehabilitation       training.              In a study published recently in Advanced Intelligent Systems,       researchers from Queen Mary University of London have made significant       advancements in the field of bionics with the development of a new       type of electric variable-stiffness artificial muscle that possesses       self-sensing capabilities. This innovative technology has the potential       to revolutionize soft robotics and medical applications.              Muscle contraction hardening is not only essential for enhancing strength       but also enables rapid reactions in living organisms. Taking inspiration       from nature, the team of researchers at QMUL's School of Engineering       and Materials Science has successfully created an artificial muscle that       seamlessly transitions between soft and hard states while also possessing       the remarkable ability to sense forces and deformations.              Dr. Ketao Zhang, a Lecturer at Queen Mary and the lead researcher,       explains the importance of variable stiffness technology in artificial       muscle-like actuators. "Empowering robots, especially those made from       flexible materials, with self-sensing capabilities is a pivotal step       towards true bionic intelligence," says Dr. Zhang.              The cutting-edge artificial muscle developed by the researchers exhibits       flexibility and stretchability similar to natural muscle, making it       ideal for integration into intricate soft robotic systems and adapting       to various geometric shapes. With the ability to withstand over 200%       stretch along the length direction, this flexible actuator with a striped       structure demonstrates exceptional durability.              By applying different voltages, the artificial muscle can rapidly adjust       its stiffness, achieving continuous modulation with a stiffness change       exceeding 30 times. Its voltage-driven nature provides a significant       advantage in terms of response speed over other types of artificial       muscles. Additionally, this novel technology can monitor its deformation       through resistance changes, eliminating the need for additional sensor       arrangements and simplifying control mechanisms while reducing costs.              The fabrication process for this self-sensing artificial muscle is       simple and reliable. Carbon nanotubes are mixed with liquid silicone       using ultrasonic dispersion technology and coated uniformly using a film       applicator to create the thin layered cathode, which also serves as the       sensing part of the artificial muscle. The anode is made directly using       a soft metal mesh cut, and the actuation layer is sandwiched between       the cathode and the anode. After the liquid materials cure, a complete       self-sensing variable-stiffness artificial muscle is formed.              The potential applications of this flexible variable stiffness technology       are vast, ranging from soft robotics to medical applications. The       seamless integration with the human body opens up possibilities for       aiding individuals with disabilities or patients in performing essential       daily tasks. By integrating the self-sensing artificial muscle, wearable       robotic devices can monitor a patient's activities and provide resistance       by adjusting stiffness levels, facilitating muscle function restoration       during rehabilitation training.              "While there are still challenges to be addressed before these medical       robots can be deployed in clinical settings, this research represents       a crucial stride towards human-machine integration," highlights       Dr. Zhang. "It provides a blueprint for the future development of soft       and wearable robots." The groundbreaking study conducted by researchers       at Queen Mary University of London marks a significant milestone in       the field of bionics. With their development of self-sensing electric       artificial muscles, they have paved the way for advancements in soft       robotics and medical applications.               * RELATED_TOPICS        o Health_&_Medicine        # Foot_Health # Fibromyalgia # Disability        o Matter_&_Energy        # Engineering # Robotics_Research # Medical_Technology        o Computers_&_Math        # Robotics # Artificial_Intelligence # Neural_Interfaces        * RELATED_TERMS        o Tetanus o Tendon o Sore_muscles_after_exercising o        Motor_neuron o Meat o Muscle o Soft_drink o Stem_cell_treatments              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Revolutionary_Electric_Artificial_Muscles *        Age_of_Universe:_26.7,_Not_13.7,_Billion_Years *        City_Ground_Is_Deforming:_Buildings_Aren't_Ready        * The_Sound_of_Silence?_People_Hear_It *        36-Million-Year_Geological_Cycle_Drives_...               * Six_Foods_to_Boost_Cardiovascular_Health        * Cystic_Fibrosis:_Lasting_Improvement *        Artificial_Cells_Demonstrate_That_'Life_...               * Advice_to_Limit_High-Fat_Dairy_Foods_Challenged *        First_Snapshots_of_Fermion_Pairs              Trending Topics this week       ==========================================================================       SPACE_&_TIME NASA Space_Missions Asteroids,_Comets_and_Meteors       MATTER_&_ENERGY Nature_of_Water Materials_Science Civil_Engineering       COMPUTERS_&_MATH Artificial_Intelligence Neural_Interfaces       Computers_and_Internet                     ==========================================================================              Strange & Offbeat       ==========================================================================       SPACE_&_TIME       Reinventing_Cosmology:_New_Research_Puts_Age_of_Universe_at_26.7_--_Not_13.7_-       -_Billion_Years       Quasar_'Clocks'_Show_Universe_Was_Five_Times_Slower_Soon_After_the_Big_Bang       First_'Ghost_Particle'_Image_of_Milky_Way MATTER_&_ENERGY       Revolutionary_Self-Sensing_Electric_Artificial_Muscles       Bees_Make_Decisions_Better_and_Faster_Than_We_Do,_for_the_Things_That_Matter_to       Them       These_Lollipops_Could_'Sweeten'_Diagnostic_Testing_for_Kids_and_Adults_Alike       COMPUTERS_&_MATH       Number_Cruncher_Calculates_Whether_Whales_Are_Acting_Weirdly       AI_Tests_Into_Top_1%_for_Original_Creative_Thinking       Researchers_Create_Highly_Conductive_Metallic_Gel_for_3D_Printing Story       Source: Materials provided by Queen_Mary_University_of_London. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Chen Liu, James J. C. Busfield, Ketao Zhang. An Electric        Self‐Sensing and Variable‐Stiffness Artificial Muscle.               Advanced Intelligent Systems, 2023; DOI: 10.1002/aisy.202300131       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230711133213.htm              --- up 1 year, 19 weeks, 1 day, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca