Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,845 of 8,931    |
|    ScienceDaily to All    |
|    New biodegradable plastics are compostab    |
|    10 Jul 23 22:30:22    |
      MSGID: 1:317/3 64acdb4e       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        New biodegradable plastics are compostable in your backyard                Date:        July 10, 2023        Source:        University of Washington        Summary:        Researchers have developed new bioplastics that degrade on the        same timescale as a banana peel in a backyard compost bin.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       We use plastics in almost every aspect of our lives. These materials       are cheap to make and incredibly stable. The problem comes when we're       done using something plastic -- it can persist in the environment       for years. Over time, plastic will break down into smaller fragments,       called microplastics, that can pose significant environmental and health       concerns.              The best-case solution would be to use bio-based plastics that biodegrade       instead, but many of those bioplastics are not designed to degrade in       backyard composting conditions. They must be processed in commercial       composting facilities, which are not accessible in all regions of the       country.              A team led by researchers at the University of Washington has developed       new bioplastics that degrade on the same timescale as a banana peel in a       backyard compost bin. These bioplastics are made entirely from powdered       blue-green cyanobacteria cells, otherwise known as spirulina. The team       used heat and pressure to form the spirulina powder into various shapes,       the same processing technique used to create conventional plastics. The       UW team's bioplastics have mechanical properties that are comparable to       single-use, petroleum-derived plastics.              The team published these findings June 20 in Advanced Functional       Materials.              "We were motivated to create bioplastics that are both bio-derived and       biodegradable in our backyards, while also being processable, scalable and       recyclable," said senior author Eleftheria Roumeli, UW assistant professor       of materials science and engineering. "The bioplastics we have developed,       using only spirulina, not only have a degradation profile similar to       organic waste, but also are on average 10 times stronger and stiffer       than previously reported spirulina bioplastics. These properties open       up new possibilities for the practical application of spirulina-based       plastics in various industries, including disposable food packaging or       household plastics, such as bottles or trays." The researchers opted       to use spirulina to make their bioplastics for a few reasons. First of       all, it can be cultivated on large scales because people already use       it for various foods and cosmetics. Also, spirulina cells sequester       carbon dioxide as they grow, making this biomass a carbon-neutral,       or potentially carbon-negative, feedstock for plastics.              "Spirulina also has unique fire-resistant properties," said lead       author Hareesh Iyer, a UW materials science and engineering doctoral       student. "When exposed to fire, it instantly self-extinguishes,       unlike many traditional plastics that either combust or melt. This       fire-resistant characteristic makes spirulina- based plastics advantageous       for applications where traditional plastics may not be suitable due to       their flammability. One example could be plastic racks in data centers       because the systems that are used to keep the servers cool can get very       hot." Creating plastic products often involves a process that uses heat       and pressure to shape the plastic into a desired shape. The UW team took       a similar approach with their bioplastics.              "This means that we would not have to redesign manufacturing lines       from scratch if we wanted to use our materials at industrial scales,"       Roumeli said. "We've removed one of the common barriers between the lab       and scaling up to meet industrial demand. For example, many bioplastics       are made from molecules that are extracted from biomass, such as seaweed,       and mixed with performance modifiers before being cast into films. This       process requires the materials to be in the form of a solution prior       to casting, and this is not scalable." Other researchers have used       spirulina to create bioplastics, but the UW researchers' bioplastics       are much stronger and stiffer than previous attempts.              The UW team optimized microstructure and bonding within these bioplastics       by altering their processing conditions -- such as temperature, pressure,       and time in the extruder or hot-press -- and studying the resulting       materials' structural properties, including their strength, stiffness       and toughness.              These bioplastics are not quite ready to be scaled up for industrial       usage. For example, while these materials are strong, they are still       fairly brittle.              Another challenge is that they are sensitive to water.              "You wouldn't want these materials to get rained on," Iyer said.              The team is addressing these issues and continuing to study the       fundamental principles that dictate how these materials behave. The       researchers hope to design for different situations, by creating an       assortment of bioplastics. This would be similar to the variety of       existing petroleum-based plastics.              The newly developed materials are also recyclable.              "Biodegradation is not our preferred end-of-life scenario," Roumeli       said. "Our spirulina bioplastics are recyclable through mechanical       recycling, which is very accessible. People don't often recycle plastics,       however, so it's an added bonus that our bioplastics do degrade quickly       in the environment." Co-authors on this paper are UW materials science       and engineering doctoral students Ian Campbell and Mallory Parker;       Paul Grandgeorge, a UW postdoctoral scholar in materials science and       engineering; Andrew Jimenez, who completed this work as a UW postdoctoral       scholar in materials science and engineering and is now at Intel;       Michael Holden, a UW master's student studying materials science and       engineering; Mathangi Venkatesh, a UW undergraduate student studying       chemical engineering; Marissa Nelsen, who completed this work as a UW       undergraduate student studying biology; and Bichlien Nguyen, a principal       researcher at Microsoft. This research was funded by Microsoft, Meta       and the National Science Foundation.               * RELATED_TOPICS        o Plants_&_Animals        # Biology # Biotechnology_and_Bioengineering #        Ecology_Research # Genetically_Modified        o Earth_&_Climate        # Recycling_and_Waste # Environmental_Science # Geology        # Ecology        * RELATED_TERMS        o Banana o Prairie_Restoration o Humus o Vermicompost o        Crane_fly o Jurassic o Cambrian o Cretaceous              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * 36-Million-Year_Geological_Cycle_Drives_...               * Six_Foods_to_Boost_Cardiovascular_Health        * Cystic_Fibrosis:_Lasting_Improvement *        Artificial_Cells_Demonstrate_That_'Life_...               * Advice_to_Limit_High-Fat_Dairy_Foods_Challenged        * First_Snapshots_of_Fermion_Pairs *        Why_No_Kangaroos_in_Bali;_No_Tigers_in_Australia        * New_Route_for_Treating_Cancer:_Chromosomes *        Giant_Stone_Artefacts_Found:_Prehistoric_Tools *        Astonishing_Secrets_of_Tunicate_Origins              Trending Topics this week       ==========================================================================       PLANTS_&_ANIMALS Endangered_Plants Botany Food EARTH_&_CLIMATE       Environmental_Policy Sustainability Hazardous_Waste FOSSILS_&_RUINS       Fossils Early_Mammals Early_Climate                     ==========================================================================              Strange & Offbeat       ==========================================================================       PLANTS_&_ANIMALS       Bees_Make_Decisions_Better_and_Faster_Than_We_Do,_for_the_Things_That_Matter_to       Them       These_Lollipops_Could_'Sweeten'_Diagnostic_Testing_for_Kids_and_Adults_Alike       Why_There_Are_No_Kangaroos_in_Bali_(and_No_Tigers_in_Australia)       EARTH_&_CLIMATE       Turning_Old_Maps_Into_3D_Digital_Models_of_Lost_Neighborhoods       Squash_Bugs_Are_Attracted_to_and_Eat_Each_Other's_Poop_to_Stock_Their       Microbiome How_Urea_May_Have_Been_the_Gateway_to_Life FOSSILS_&_RUINS       Giant_Stone_Artefacts_Found_on_Rare_Ice_Age_Site_in_Kent,_UK       Fossils_Reveal_How_Ancient_Birds_Molted_Their_Feathers_--_Which_Could_Help       Explain_Why_Ancestors_of_Modern_Birds_Survived_When_All_the_Other_Dinosaurs       Died Apex_Predator_of_the_Cambrian_Likely_Sought_Soft_Over_Crunchy_Prey       Story Source: Materials provided by University_of_Washington. Original       written by Sarah McQuate. Note: Content may be edited for style and       length.                     ==========================================================================       Journal Reference:        1. Hareesh Iyer, Paul Grandgeorge, Andrew M. Jimenez, Ian R. Campbell,        Mallory Parker, Michael Holden, Mathangi Venkatesh, Marissa        Nelsen, Bichlien Nguyen, Eleftheria Roumeli. Fabricating Strong and        Stiff Bioplastics from Whole Spirulina Cells. Advanced Functional        Materials, 2023; DOI: 10.1002/adfm.202302067       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230710132950.htm              --- up 1 year, 19 weeks, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca