Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,821 of 8,931    |
|    ScienceDaily to All    |
|    bioelectronic device    |
|    10 Jul 23 22:30:20    |
      MSGID: 1:317/3 64acdb06       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08       bioelectronic device         Tiny transistor enables device to acquire and transmit neurophysiologic       brain signals while simultaneously providing power to the implanted device                      Date:        July 10, 2023        Source:        Columbia University School of Engineering and Applied Science        Summary:        Researchers have announced that they have developed the first stand-        alone, conformable, fully organic bioelectronic device that can        not only acquire and transmit neurophysiologic brain signals,        but can also provide power for device operation.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       As researchers make major advances in medical care, they are also       discovering that the efficacy of these treatments can be enhanced by       individualized approaches. Therefore, clinicians increasingly need       methods that can both continuously monitor physiological signals and       then personalize responsive delivery of therapeutics.              Need for safe, flexible bioelectronic devices Implanted bioelectronic       devices are playing a critical role in these treatments, but there are a       number of challenges that have stalled their widespread adoption. These       devices require specialized components for signal acquisition,       processing, data transmission, and powering. Up to now, achieving these       capabilities in an implanted device has entailed using numerous rigid       and non-biocompatible components that can lead to tissue disruption and       patient discomfort. Ideally, these devices need to be biocompatible,       flexible, and stable in the long term in the body. They also must be       fast and sensitive enough to record rapid, low-amplitude biosignals,       while still being able to transmit data for external analysis.              Columbia researchers invent first stand-alone, flexible, fully organic       bioelectronic device Columbia Engineering researchers announced today       that they have developed the first stand-alone, conformable, fully       organic bioelectronic device that can not only acquire and transmit       neurophysiologic brain signals, but can also provide power for device       operation. This device, about 100 times smaller than a human hair,       is based on an organic transistor architecture that incorporates a       vertical channel and a miniaturized water conduit demonstrating long-term       stability, high electrical performance, and low-voltage operation to       prevent biological tissue damage. The findings are outlined in a new       study, published today in Nature Materials.              Both researchers and clinicians knew there was a need for transistors       that concurrently pose all of these features: low voltage of       operation, biocompatibility, performance stability, conformability       for in vivo operation; and high electrical performance, including       fast temporal response, high transconductance, and crosstalk-free       operation. Silicon-based transistors are the most established       technologies, but they are not a perfect solution because they are       hard, rigid, and unable to establish a very efficient ion interface       with the body. ] The team addressed these issues by introducing a       scalable, self-contained, sub- micron IGT (internal-ion-gated organic       electrochemical transistor) architecture, the vIGT. They incorporated a       vertical channel arrangement that augments the intrinsic speed of the       IGT architecture by optimizing channel geometry and permitting a high       density arrangement of transistors next to each other -- , 155,000of       them per centimeter square.              Scalable vGITs are the fastest electrochemical transistors The vIGTs       are composed of biocompatible, commercially available materials that       do not require encapsulation in biological environments and are not       impaired by exposure to water or ions. The composite material of the       channel can be reproducibly manufactured in large quantities and is       solution-processible, making it more accessible to a broad range of       fabrication processes. They are flexible and compatible with integration       into a wide variety of conformable plastic substrates and have long-term       stability, low inter-transistor crosstalk, and high-density integration       capacity, allowing fabrication of efficient integrated circuits.              "Organic electronics are not known for their high performance       and reliability," said the study's leader Dion Khodagholy, associate       professor of electrical engineering. "But with our new vGIT architecture,       we were able to incorporate a vertical channel that has its own       supply of ions. This self-sufficiency of ions made the transistor       to be particularly fast -- in fact, they are currently the fastest       electrochemical transistors." To push the speed of operation even       further, the team used advanced nanofabrication techniques to miniaturize       and densify these transistors at submicro-meter scales. Fabrication took       place in the cleanroom of the Columbia Nano Initiative.              Collaborating with CUIMC clinicians To develop the architecture, the       researchers first needed to understand the challenges involved with       diagnosis and treatment of patients with neurological disorders like       epilepsy, as well as the methodologies currently used. They worked with       colleagues at the Department of Neurology at Columbia University Irving       Medical Center, in particular, with Jennifer Gelinas, assistant professor       of neurology, electrical and biomedical engineering and director of the       Epilepsy and Cognition Lab.              The combination of high-speed, flexibility. and low-voltage operation       enables the transistors to not only be used for neural signal recording       but also for data transmission as well as powering the device, leading       to a fully conformable implant. The researchers used this feature to       demonstrate fully soft and confirmable implants capable of recording       and transmitting high resolution neural activity from both outside,       on the surface of the brain, as well as inside, deep within the brain.              "This work will potentially open a wide range of translational       opportunities and make medical implants accessible to a large patient       demographic who are traditionally not qualified for implantable devices       due to the complexity and high risks of such procedures," said Gelinas.              "It's amazing to think that our research and devices could help physicians       with better diagnostics and could have a positive impact on patients'       quality of life," added the study's lead author Claudia Cea, who recently       completed her PhD and will be a postdoctoral fellow at MIT this fall.              Next steps The researchers plan next to join forces with neurosurgeons       at CUIMC to validate the capabilities of vIGT-based implants in operating       rooms. The team expects to develop soft and safe implants that can detect       and identify various pathological brain waves caused by neurological       disorders.               * RELATED_TOPICS        o Mind_&_Brain        # Brain-Computer_Interfaces # Intelligence #        Learning_Disorders        o Matter_&_Energy        # Medical_Technology # Electronics # Graphene        o Computers_&_Math        # Neural_Interfaces # Spintronics_Research #        Computers_and_Internet        * RELATED_TERMS        o Solar_cell o Solar_power o Machine o Nuclear_power_plant        o Catalytic_converter o Capacitor o Electroencephalography        o Newton's_cradle              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * 36-Million-Year_Geological_Cycle_Drives_...               * Six_Foods_to_Boost_Cardiovascular_Health        * Cystic_Fibrosis:_Lasting_Improvement *        Artificial_Cells_Demonstrate_That_'Life_...               * Advice_to_Limit_High-Fat_Dairy_Foods_Challenged        * First_Snapshots_of_Fermion_Pairs *        Why_No_Kangaroos_in_Bali;_No_Tigers_in_Australia        * New_Route_for_Treating_Cancer:_Chromosomes *        Giant_Stone_Artefacts_Found:_Prehistoric_Tools *        Astonishing_Secrets_of_Tunicate_Origins              Trending Topics this week       ==========================================================================       SPACE_&_TIME Jupiter Mars NASA MATTER_&_ENERGY Materials_Science       Construction Engineering_and_Construction COMPUTERS_&_MATH       Artificial_Intelligence Educational_Technology Neural_Interfaces                     ==========================================================================              Strange & Offbeat       ==========================================================================       SPACE_&_TIME       Quasar_'Clocks'_Show_Universe_Was_Five_Times_Slower_Soon_After_the_Big_Bang       First_'Ghost_Particle'_Image_of_Milky_Way       Gullies_on_Mars_Could_Have_Been_Formed_by_Recent_Periods_of_Liquid_Meltwater,       Study_Suggests MATTER_&_ENERGY       Bees_Make_Decisions_Better_and_Faster_Than_We_Do,_for_the_Things_That_Matter_to       Them       These_Lollipops_Could_'Sweeten'_Diagnostic_Testing_for_Kids_and_Adults_Alike       Holograms_for_Life:_Improving_IVF_Success COMPUTERS_&_MATH       Number_Cruncher_Calculates_Whether_Whales_Are_Acting_Weirdly       AI_Tests_Into_Top_1%_for_Original_Creative_Thinking       Researchers_Create_Highly_Conductive_Metallic_Gel_for_3D_Printing       Story Source: Materials provided by       Columbia_University_School_of_Engineering_and_Applied Science. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Claudia Cea, Zifang Zhao, Duncan J. Wisniewski, George        D. Spyropoulos,        Anastasios Polyravas, Jennifer N. Gelinas, Dion        Khodagholy. Integrated internal ion-gated organic electrochemical        transistors for stand-alone conformable bioelectronics. Nature        Materials, 2023; DOI: 10.1038/s41563- 023-01599-w       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230710180523.htm              --- up 1 year, 19 weeks, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca