home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   EARTH      Uhh, that 3rd rock from the sun?      8,931 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 8,819 of 8,931   
   ScienceDaily to All   
   Taking a lesson from spiders: Researcher   
   10 Jul 23 22:30:20   
   
   MSGID: 1:317/3 64acdb00   
   PID: hpt/lnx 1.9.0-cur 2019-01-08   
   TID: hpt/lnx 1.9.0-cur 2019-01-08   
    Taking a lesson from spiders: Researchers create an innovative method to   
   produce soft, recyclable fibers for smart textiles    
      
     Date:   
         July 10, 2023   
     Source:   
         National University of Singapore   
     Summary:   
         Researchers drew inspiration from the spider silk spinning process   
         to fabricate strong, stretchable, and electrically conductive   
         soft fibers.   
      
         Their novel technique overcomes the challenges of conventional   
         methods, which require complex conditions and systems. Such soft and   
         recyclable fibers have a wide range of potential applications, such   
         as a strain- sensing glove for gaming or a smart mask for monitoring   
         breathing status for conditions such as obstructive sleep apnea.   
      
      
         Facebook Twitter Pinterest LinkedIN Email   
      
   ==========================================================================   
   FULL STORY   
   ==========================================================================   
   Smart textiles offer many potential wearable technology applications,   
   from therapeutics to sensing to communication. For such intelligent   
   textiles to function effectively, they need to be strong, stretchable,   
   and electrically conductive. However, fabricating fibres that possess   
   these three properties is challenging and requires complex conditions   
   and systems.   
      
   Drawing inspiration from how spiders spin silk to make webs, a team of   
   researchers led by Assistant Professor Swee-Ching Tan from the Department   
   of Materials Science and Engineering under the National University of   
   Singapore's College of Design and Engineering, together with their   
   international collaborators, have developed an innovative method of   
   producing soft fibres that possess these three key properties, and at the   
   same time can be easily reused to produce new fibres. The fabrication   
   process can be carried out at room temperature and pressure, and uses   
   less solvent as well as less energy, making it an attractive option for   
   producing functional soft fibres for various smart applications.   
      
   "Technologies for fabricating soft fibres should be simple, efficient and   
   sustainable to meet the high demand for smart textile electronics. Soft   
   fibres created using our spider-inspired method of spinning has been   
   demonstrated to be versatile for various smart technology applications   
   -- for example, these functional fibres can be incorporated into   
   a strain-sensing glove for gaming purposes, and a smart face mask   
   to monitor breathing status for conditions such as obstructive sleep   
   apnea. These are just some of the many possibilities," said Asst Prof Tan.   
      
   Their innovation was demonstrated and outlined in their paper that was   
   published in scientific journal Nature Electronics on 27 April 2023.   
      
   Spinning a web of soft fibres Conventional artificial spinning methods   
   to fabricate synthetic fibres require high pressure, high energy input,   
   large volumes of chemicals, and specialised equipment. Moreover, the   
   resulting fibres typically have limited functions.   
      
   In contrast, the spider silk spinning process is highly efficient and can   
   form strong and versatile fibres under room temperature and pressure. To   
   address the current technological challenges, the NUS team decided to   
   emulate this natural spinning process to create one-dimensional (1D)   
   functional soft fibres that are strong, stretchable, and electrically   
   conductive. They identified two unique steps in spider silk formation   
   that they could mimic.   
      
   Spider silk formation involves the change of a highly concentrated protein   
   solution, known as a silk dope, into a strand of fibre. The researchers   
   first identified that the protein concentration and interactions in   
   the silk dope increase from dope synthesis to spinning. The second   
   step identified was that the arrangement of proteins within the dope   
   changes when triggered by external factors to help separate the liquid   
   portion from the silk dope, leaving the solid part -- the spider silk   
   fibres. This second step is known as liquid-solid phase separation.   
      
   The team recreated the two steps and developed a new spinning process   
   known as the phase separation-enabled ambient (PSEA) spinning approach.   
      
   The soft fibres were spun from a viscous gel solution composed of   
   polyacrylonitrile (PAN) and silver ions -- referred to as PANSion --   
   dissolved in dimethylformamide (DMF), a common solvent. This gel solution   
   is known as the spinning dope, which forms into a strand of soft fibre   
   through the spinning process when the gel is pulled and spun under   
   ambient conditions.   
      
   Once the PANSion gel is pulled and exposed to air, water molecules in the   
   air act as a trigger to cause the liquid portion of the gel to separate in   
   the form of droplets from the solid portion of the gel, this phenomenon   
   is known as the nonsolvent vapour-induced phase separation effect. When   
   separated from the solid fibre, the droplets of the liquid portion are   
   removed by holding the fibre vertically or at an angle for gravity to   
   do its work.   
      
   "Fabrication of 1D soft fibres with seamless integration of all-round   
   functionalities is much more difficult to achieve and requires complicated   
   fabrication or multiple post-treatment processes. This innovative method   
   fulfils an unmet need to create a simple yet efficient spinning approach   
   to produce functional 1D soft fibres that simultaneously possess unified   
   mechanical and electrical functionalities," said Asst Prof Tan.   
      
   Three properties, one method The biomimetic spinning process combined   
   with the unique formulation of the gel solution allowed the researchers   
   to fabricate soft fibres that are imbued with three key properties --   
   strong, stretchable, and electrically conductive.   
      
   Researchers tested the mechanical properties, strength, and elasticity,   
   of the PANSion gel through a series of stress tests and demonstrated   
   that this remarkable innovation possessed excellent strength and   
   elasticity. These tests also allowed the researchers to deduce that   
   the formation of strong chemical networks between metal-based complexes   
   within the gel is responsible for its mechanical properties.   
      
   Further analysis of the PANSion soft fibres at the molecular level   
   confirmed its electrical conductivity and showed that the silver ions   
   present in the PANSion gel contributed to the electrical conductivity   
   of the soft fibres.   
      
   The team then concluded that PANSion soft fibres fulfils all the   
   properties that would allow it to be versatile and potentially be used   
   in a wide range of smart technology applications.   
      
   Potential applications and next steps The team demonstrated the   
   capabilities of the PANSion soft fibres in a number of applications,   
   such as communication and temperature sensing. PANSion fibres were sewn   
   to create an interactive glove that exemplified a smart gaming glove.   
      
   When connected to a computer interface, the glove could successfully   
   detect human hand gestures and enable a user to play simple games.   
      
   PANSion fibres could also detect changes in electrical signals that   
   could be used as a form of communication like Morse code. In addition,   
   these fibres could sense temperature changes, a property that can   
   potentially be capitalised to protect robots from environments with   
   extreme temperatures. Researchers also sewed PANSion fibres into a smart   
   face mask for monitoring the breathing activities of the mask wearer.   
      
   On top of the wide range of potential applications of PANSion soft fibres,   
   this innovative discovery earns points in sustainability. PANSion fibres   
   could be recycled by dissolving in DMF, allowing it to be converted back   
   into a gel solution for spinning new fibres. A comparison with other   
   current fibre- spinning methods revealed that this new spider-inspired   
   method consumes significantly lower amounts of energy and requires lower   
   volume of chemicals.   
      
   Further to this cutting-edge discovery, the research team will continue   
   to work on improving the sustainability of the PANSion soft fibres   
   throughout its production cycle, from the raw materials to recycling   
   the final product.   
      
       * RELATED_TOPICS   
             o Plants_&_Animals   
                   # Spiders_and_Ticks # Extreme_Survival #   
                   Animal_Learning_and_Intelligence   
             o Matter_&_Energy   
                   # Spintronics # Textiles_and_Clothing # Nature_of_Water   
             o Computers_&_Math   
                   # Spintronics_Research # Artificial_Intelligence #   
                   Communications   
       * RELATED_TERMS   
             o Spider_silk o Neuron o Spider o Sleep_disorder o   
             Virtual_reality o Chaos_theory o Optic_nerve o Silk   
      
   ==========================================================================   
      
    Print   
      
    Email   
      
    Share   
   ==========================================================================   
   ****** 1 ****** ***** 2 ***** **** 3 ****   
   *** 4 *** ** 5 ** Breaking this hour   
   ==========================================================================   
       * Six_Foods_to_Boost_Cardiovascular_Health   
       * Cystic_Fibrosis:_Lasting_Improvement *   
       Artificial_Cells_Demonstrate_That_'Life_...   
      
       * Advice_to_Limit_High-Fat_Dairy_Foods_Challenged   
       * First_Snapshots_of_Fermion_Pairs *   
       Why_No_Kangaroos_in_Bali;_No_Tigers_in_Australia   
       * New_Route_for_Treating_Cancer:_Chromosomes *   
       Giant_Stone_Artefacts_Found:_Prehistoric_Tools   
       * Astonishing_Secrets_of_Tunicate_Origins *   
       Most_Distant_Active_Supermassive_Black_Hole   
      
   Trending Topics this week   
   ==========================================================================   
   SPACE_&_TIME Jupiter Mars NASA MATTER_&_ENERGY Materials_Science   
   Construction Engineering_and_Construction COMPUTERS_&_MATH   
   Artificial_Intelligence Educational_Technology Neural_Interfaces   
      
      
   ==========================================================================   
      
   Strange & Offbeat   
   ==========================================================================   
   SPACE_&_TIME   
   Quasar_'Clocks'_Show_Universe_Was_Five_Times_Slower_Soon_After_the_Big_Bang   
   First_'Ghost_Particle'_Image_of_Milky_Way   
   Gullies_on_Mars_Could_Have_Been_Formed_by_Recent_Periods_of_Liquid_Meltwater,   
   Study_Suggests MATTER_&_ENERGY   
   Bees_Make_Decisions_Better_and_Faster_Than_We_Do,_for_the_Things_That_Matter_to   
   Them   
   These_Lollipops_Could_'Sweeten'_Diagnostic_Testing_for_Kids_and_Adults_Alike   
   Holograms_for_Life:_Improving_IVF_Success COMPUTERS_&_MATH   
   Number_Cruncher_Calculates_Whether_Whales_Are_Acting_Weirdly   
   AI_Tests_Into_Top_1%_for_Original_Creative_Thinking   
   Researchers_Create_Highly_Conductive_Metallic_Gel_for_3D_Printing Story   
   Source: Materials provided by National_University_of_Singapore. Note:   
   Content may be edited for style and length.   
      
      
   ==========================================================================   
   Journal Reference:   
      1. Songlin Zhang, Yihao Zhou, Alberto Libanori, Yibing Deng,   
      Mingyang Liu,   
         Mengjuan Zhou, Hao Qu, Xun Zhao, Peng Zheng, You-Liang Zhu, Jun   
         Chen, Swee Ching Tan. Biomimetic spinning of soft functional fibres   
         via spontaneous phase separation. Nature Electronics, 2023; 6 (5):   
         338 DOI: 10.1038/s41928-023-00960-w   
   ==========================================================================   
      
   Link to news story:   
   https://www.sciencedaily.com/releases/2023/07/230710113851.htm   
      
   --- up 1 year, 19 weeks, 10 hours, 50 minutes   
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)   
   SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114   
   SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854   
   SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35   
   PATH: 317/3 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca