Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,819 of 8,931    |
|    ScienceDaily to All    |
|    Taking a lesson from spiders: Researcher    |
|    10 Jul 23 22:30:20    |
      MSGID: 1:317/3 64acdb00       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Taking a lesson from spiders: Researchers create an innovative method to       produce soft, recyclable fibers for smart textiles                Date:        July 10, 2023        Source:        National University of Singapore        Summary:        Researchers drew inspiration from the spider silk spinning process        to fabricate strong, stretchable, and electrically conductive        soft fibers.               Their novel technique overcomes the challenges of conventional        methods, which require complex conditions and systems. Such soft and        recyclable fibers have a wide range of potential applications, such        as a strain- sensing glove for gaming or a smart mask for monitoring        breathing status for conditions such as obstructive sleep apnea.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Smart textiles offer many potential wearable technology applications,       from therapeutics to sensing to communication. For such intelligent       textiles to function effectively, they need to be strong, stretchable,       and electrically conductive. However, fabricating fibres that possess       these three properties is challenging and requires complex conditions       and systems.              Drawing inspiration from how spiders spin silk to make webs, a team of       researchers led by Assistant Professor Swee-Ching Tan from the Department       of Materials Science and Engineering under the National University of       Singapore's College of Design and Engineering, together with their       international collaborators, have developed an innovative method of       producing soft fibres that possess these three key properties, and at the       same time can be easily reused to produce new fibres. The fabrication       process can be carried out at room temperature and pressure, and uses       less solvent as well as less energy, making it an attractive option for       producing functional soft fibres for various smart applications.              "Technologies for fabricating soft fibres should be simple, efficient and       sustainable to meet the high demand for smart textile electronics. Soft       fibres created using our spider-inspired method of spinning has been       demonstrated to be versatile for various smart technology applications       -- for example, these functional fibres can be incorporated into       a strain-sensing glove for gaming purposes, and a smart face mask       to monitor breathing status for conditions such as obstructive sleep       apnea. These are just some of the many possibilities," said Asst Prof Tan.              Their innovation was demonstrated and outlined in their paper that was       published in scientific journal Nature Electronics on 27 April 2023.              Spinning a web of soft fibres Conventional artificial spinning methods       to fabricate synthetic fibres require high pressure, high energy input,       large volumes of chemicals, and specialised equipment. Moreover, the       resulting fibres typically have limited functions.              In contrast, the spider silk spinning process is highly efficient and can       form strong and versatile fibres under room temperature and pressure. To       address the current technological challenges, the NUS team decided to       emulate this natural spinning process to create one-dimensional (1D)       functional soft fibres that are strong, stretchable, and electrically       conductive. They identified two unique steps in spider silk formation       that they could mimic.              Spider silk formation involves the change of a highly concentrated protein       solution, known as a silk dope, into a strand of fibre. The researchers       first identified that the protein concentration and interactions in       the silk dope increase from dope synthesis to spinning. The second       step identified was that the arrangement of proteins within the dope       changes when triggered by external factors to help separate the liquid       portion from the silk dope, leaving the solid part -- the spider silk       fibres. This second step is known as liquid-solid phase separation.              The team recreated the two steps and developed a new spinning process       known as the phase separation-enabled ambient (PSEA) spinning approach.              The soft fibres were spun from a viscous gel solution composed of       polyacrylonitrile (PAN) and silver ions -- referred to as PANSion --       dissolved in dimethylformamide (DMF), a common solvent. This gel solution       is known as the spinning dope, which forms into a strand of soft fibre       through the spinning process when the gel is pulled and spun under       ambient conditions.              Once the PANSion gel is pulled and exposed to air, water molecules in the       air act as a trigger to cause the liquid portion of the gel to separate in       the form of droplets from the solid portion of the gel, this phenomenon       is known as the nonsolvent vapour-induced phase separation effect. When       separated from the solid fibre, the droplets of the liquid portion are       removed by holding the fibre vertically or at an angle for gravity to       do its work.              "Fabrication of 1D soft fibres with seamless integration of all-round       functionalities is much more difficult to achieve and requires complicated       fabrication or multiple post-treatment processes. This innovative method       fulfils an unmet need to create a simple yet efficient spinning approach       to produce functional 1D soft fibres that simultaneously possess unified       mechanical and electrical functionalities," said Asst Prof Tan.              Three properties, one method The biomimetic spinning process combined       with the unique formulation of the gel solution allowed the researchers       to fabricate soft fibres that are imbued with three key properties --       strong, stretchable, and electrically conductive.              Researchers tested the mechanical properties, strength, and elasticity,       of the PANSion gel through a series of stress tests and demonstrated       that this remarkable innovation possessed excellent strength and       elasticity. These tests also allowed the researchers to deduce that       the formation of strong chemical networks between metal-based complexes       within the gel is responsible for its mechanical properties.              Further analysis of the PANSion soft fibres at the molecular level       confirmed its electrical conductivity and showed that the silver ions       present in the PANSion gel contributed to the electrical conductivity       of the soft fibres.              The team then concluded that PANSion soft fibres fulfils all the       properties that would allow it to be versatile and potentially be used       in a wide range of smart technology applications.              Potential applications and next steps The team demonstrated the       capabilities of the PANSion soft fibres in a number of applications,       such as communication and temperature sensing. PANSion fibres were sewn       to create an interactive glove that exemplified a smart gaming glove.              When connected to a computer interface, the glove could successfully       detect human hand gestures and enable a user to play simple games.              PANSion fibres could also detect changes in electrical signals that       could be used as a form of communication like Morse code. In addition,       these fibres could sense temperature changes, a property that can       potentially be capitalised to protect robots from environments with       extreme temperatures. Researchers also sewed PANSion fibres into a smart       face mask for monitoring the breathing activities of the mask wearer.              On top of the wide range of potential applications of PANSion soft fibres,       this innovative discovery earns points in sustainability. PANSion fibres       could be recycled by dissolving in DMF, allowing it to be converted back       into a gel solution for spinning new fibres. A comparison with other       current fibre- spinning methods revealed that this new spider-inspired       method consumes significantly lower amounts of energy and requires lower       volume of chemicals.              Further to this cutting-edge discovery, the research team will continue       to work on improving the sustainability of the PANSion soft fibres       throughout its production cycle, from the raw materials to recycling       the final product.               * RELATED_TOPICS        o Plants_&_Animals        # Spiders_and_Ticks # Extreme_Survival #        Animal_Learning_and_Intelligence        o Matter_&_Energy        # Spintronics # Textiles_and_Clothing # Nature_of_Water        o Computers_&_Math        # Spintronics_Research # Artificial_Intelligence #        Communications        * RELATED_TERMS        o Spider_silk o Neuron o Spider o Sleep_disorder o        Virtual_reality o Chaos_theory o Optic_nerve o Silk              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Six_Foods_to_Boost_Cardiovascular_Health        * Cystic_Fibrosis:_Lasting_Improvement *        Artificial_Cells_Demonstrate_That_'Life_...               * Advice_to_Limit_High-Fat_Dairy_Foods_Challenged        * First_Snapshots_of_Fermion_Pairs *        Why_No_Kangaroos_in_Bali;_No_Tigers_in_Australia        * New_Route_for_Treating_Cancer:_Chromosomes *        Giant_Stone_Artefacts_Found:_Prehistoric_Tools        * Astonishing_Secrets_of_Tunicate_Origins *        Most_Distant_Active_Supermassive_Black_Hole              Trending Topics this week       ==========================================================================       SPACE_&_TIME Jupiter Mars NASA MATTER_&_ENERGY Materials_Science       Construction Engineering_and_Construction COMPUTERS_&_MATH       Artificial_Intelligence Educational_Technology Neural_Interfaces                     ==========================================================================              Strange & Offbeat       ==========================================================================       SPACE_&_TIME       Quasar_'Clocks'_Show_Universe_Was_Five_Times_Slower_Soon_After_the_Big_Bang       First_'Ghost_Particle'_Image_of_Milky_Way       Gullies_on_Mars_Could_Have_Been_Formed_by_Recent_Periods_of_Liquid_Meltwater,       Study_Suggests MATTER_&_ENERGY       Bees_Make_Decisions_Better_and_Faster_Than_We_Do,_for_the_Things_That_Matter_to       Them       These_Lollipops_Could_'Sweeten'_Diagnostic_Testing_for_Kids_and_Adults_Alike       Holograms_for_Life:_Improving_IVF_Success COMPUTERS_&_MATH       Number_Cruncher_Calculates_Whether_Whales_Are_Acting_Weirdly       AI_Tests_Into_Top_1%_for_Original_Creative_Thinking       Researchers_Create_Highly_Conductive_Metallic_Gel_for_3D_Printing Story       Source: Materials provided by National_University_of_Singapore. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Songlin Zhang, Yihao Zhou, Alberto Libanori, Yibing Deng,        Mingyang Liu,        Mengjuan Zhou, Hao Qu, Xun Zhao, Peng Zheng, You-Liang Zhu, Jun        Chen, Swee Ching Tan. Biomimetic spinning of soft functional fibres        via spontaneous phase separation. Nature Electronics, 2023; 6 (5):        338 DOI: 10.1038/s41928-023-00960-w       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230710113851.htm              --- up 1 year, 19 weeks, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca