Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,813 of 8,931    |
|    ScienceDaily to All    |
|    LIONESS redefines brain tissue imaging    |
|    10 Jul 23 22:30:20    |
      MSGID: 1:317/3 64acdaee       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        LIONESS redefines brain tissue imaging         Large collaboration at ISTA yields an unprecedented 'live' view into the       brain's complexity                Date:        July 10, 2023        Source:        Institute of Science and Technology Austria        Summary:        Scientists have come together to present a new way to observe the        brain's structure and dynamics -- in a high resolution and without        damaging the tissue.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Brain tissue is one of the most intricate specimens that scientists have       arguably ever dealt with. Packed with currently immeasurable amount of       information, the human brain is the most sophisticated computational       device with its network of around 86 billion neurons. Understanding       such complexity is a difficult task, and hence making progress requires       technologies to unravel the tiny, complex interactions taking place in       the brain at microscopic scales.              Imaging is therefore an enabling tool in neuroscience.              The new imaging and virtual reconstruction technology developed by Johann       Danzl's group at ISTA is a big leap in imaging brain activity and is       aptly named LIONESS -- Live Information Optimized Nanoscopy Enabling       Saturated Segmentation. LIONESS is a pipeline to image, reconstruct,       and analyze live brain tissue with a comprehensiveness and spatial       resolution not possible until now.              "With LIONESS, for the first time, it is possible to get a comprehensive,       dense reconstruction of living brain tissue. By imaging the tissue       multiple times, LIONESS allows us to observe and measure the dynamic       cellular biology in the brain take its course," says first author Philipp       Velicky. "The output is a reconstructed image of the cellular arrangements       in three dimensions, with time making up the fourth dimension, as the       sample can be imaged over minutes, hours, or days," he adds.              With LIONESS neuroscientists can image living brain tissue and achieve       high- resolution 3D imagery without damaging the living sample.              Collaboration and AI the Key The strength of LIONESS lies in refined       optics and in the two levels of deep learning -- a method of Artificial       Intelligence -- that make up its core: the first enhances the image       quality and the second identifies the different cellular structures in       the dense neuronal environment.              The pipeline is a result of a collaboration between the Danzl group,       Bickel group, Jonas group, Novarino group, and ISTA's Scientific Service       Units, as well as other international collaborators. "Our approach was       to assemble a dynamic group of scientists with unique combined expertise       across disciplinary boundaries, who work together to close a technology       gap in the analysis of brain tissue," Johann Danzl of ISTA says.              Surpassing hurdles Previously it was possible to get reconstructions of       brain tissue by using Electron Microscopy. This method images the sample       based on its interactions with electrons. Despite its ability to capture       images at a few nanometers -- a millionth of a millimeter -- resolution,       Electron Microscopy requires a sample to be fixed in one biological state,       which needs to be physically sectioned to obtain 3D information. Hence,       no dynamic information can be obtained.              Another previously known technique of Light Microscopy allows observation       of living systems and record intact tissue volumes by slicing them       "optically" rather than physically. However, Light Microscopy is severely       hampered in its resolving power by the very properties of the light waves       it uses to generate an image. Its best-case resolution is a few hundred       nanometers, much too coarse-grained to capture important cellular details       in brain tissue.              Using Super-resolution Light Microscopy scientists can break       this resolution barrier. Recent work in this field, dubbed SUSHI       (Super-resolution Shadow Imaging), showed that applying dye molecules       to the spaces around cells and applying the Nobel Prize-winning       super-resolution technique STED (Stimulated Emission Depletion) microscopy       reveals super-resolved 'shadows' of all the cellular structures and thus       visualizes them in the tissue. Nevertheless, it has been impossible to       image entire volumes of brain tissue with resolution enhancement that       matches the brain tissue's complex 3D architecture. This is because       increasing resolution also entails a high load of imaging light on the       sample, which may damage or 'fry' the subtle, living tissue.              Herein lies the prowess of LIONESS, having been developed for,       according to the authors, "fast and mild" imaging conditions, thus       keeping the sample alive. The technique does so while providing       isotropic super-resolution -- meaning that it is equally good in all       three spatial dimensions -- that allows visualization of the tissue's       cellular components in 3D nanoscale resolved detail.              LIONESS collects only as little information from the sample as needed       during the imaging step. This is followed by the first deep learning step       to fill in additional information on the brain tissue's structure in a       process called Image Restoration. In this innovative way, it achieves       a resolution of around 130 nanometers, while being gentle enough for       imaging of living brain tissue in real-time. Together, these steps       allow for a second step of deep learning, this time to make sense of the       extremely complex imaging data and identify the neuronal structures in       an automated manner.              Homing In "The interdisciplinary approach allowed us to break the       intertwined limitations in resolving power and light exposure to the       living system, to make sense of the complex 3D data, and to couple       the tissue's cellular architecture with molecular and functional       measurements," says Danzl.              For virtual reconstruction, Danzl and Velicky teamed up with visual       computing experts: the Bickel group at ISTA and the group led by       Hanspeter Pfister at Harvard University, who contributed their expertise       in automated segmentation - - the process of automatically recognizing       the cellular structures in the tissue -- and visualization, with further       support by ISTA's image analysis staff scientist Christoph Sommer. For       sophisticated labeling strategies, neuroscientists and chemists from       Edinburgh, Berlin, and ISTA contributed.              Consequently, it was possible to bridge functional measurements, i.e. to       read out the cellular structures together with biological signaling       activity in the same living neuronal circuit. This was done by imaging       Calcium ion fluxes into cells and measuring the cellular electrical       activity in collaboration with the Jonas group at ISTA. The Novarino group       contributed human cerebral organoids, often nicknamed mini-brains that       mimic human brain development. The authors underline that all of this       was facilitated through expert support by ISTA's top-notch scientific       service units.              Brain structure and activity are highly dynamic; its structures evolve       as the brain performs and learns new tasks. This aspect of the brain       is often referred to as "plasticity." Hence, observing the changes in       the brain's tissue architecture is essential to unlocking the secrets       behind its plasticity. The new tool developed at ISTA shows potential for       understanding the functional architecture of brain tissue and potentially       other organs by revealing the subcellular structures and capturing how       these might change over time.               * RELATED_TOPICS        o Mind_&_Brain        # Brain-Computer_Interfaces # Brain_Injury # Intelligence        o Matter_&_Energy        # Medical_Technology # Optics # Biochemistry        o Computers_&_Math        # Neural_Interfaces # Computer_Graphics # Communications        * RELATED_TERMS        o Scanning_electron_microscope o Conflict_resolution o Amygdala        o Perfectionism_(psychology) o Homosexuality o Alpha_wave o        Brain_damage o Aggression              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Six_Foods_to_Boost_Cardiovascular_Health        * Cystic_Fibrosis:_Lasting_Improvement *        Artificial_Cells_Demonstrate_That_'Life_...               * Advice_to_Limit_High-Fat_Dairy_Foods_Challenged        * First_Snapshots_of_Fermion_Pairs *        Why_No_Kangaroos_in_Bali;_No_Tigers_in_Australia        * New_Route_for_Treating_Cancer:_Chromosomes *        Giant_Stone_Artefacts_Found:_Prehistoric_Tools        * Astonishing_Secrets_of_Tunicate_Origins *        Most_Distant_Active_Supermassive_Black_Hole              Trending Topics this week       ==========================================================================       SPACE_&_TIME Jupiter Mars NASA MATTER_&_ENERGY Materials_Science       Construction Engineering_and_Construction COMPUTERS_&_MATH       Artificial_Intelligence Educational_Technology Neural_Interfaces                     ==========================================================================              Strange & Offbeat       ==========================================================================       SPACE_&_TIME       Quasar_'Clocks'_Show_Universe_Was_Five_Times_Slower_Soon_After_the_Big_Bang       First_'Ghost_Particle'_Image_of_Milky_Way       Gullies_on_Mars_Could_Have_Been_Formed_by_Recent_Periods_of_Liquid_Meltwater,       Study_Suggests MATTER_&_ENERGY       Bees_Make_Decisions_Better_and_Faster_Than_We_Do,_for_the_Things_That_Matter_to       Them       These_Lollipops_Could_'Sweeten'_Diagnostic_Testing_for_Kids_and_Adults_Alike       Holograms_for_Life:_Improving_IVF_Success COMPUTERS_&_MATH       Number_Cruncher_Calculates_Whether_Whales_Are_Acting_Weirdly       AI_Tests_Into_Top_1%_for_Original_Creative_Thinking       Researchers_Create_Highly_Conductive_Metallic_Gel_for_3D_Printing       Story Source: Materials provided by       Institute_of_Science_and_Technology_Austria. Note: Content may be edited       for style and length.                     ==========================================================================       Journal Reference:        1. Philipp Velicky, Eder Miguel, Julia M. Michalska, Julia Lyudchik,        Donglai        Wei, Zudi Lin, Jake F. Watson, Jakob Troidl, Johanna Beyer,        Yoav Ben- Simon, Christoph Sommer, Wiebke Jahr, Alban Cenameri,        Johannes Broichhagen, Seth G. N. Grant, Peter Jonas, Gaia Novarino,        Hanspeter Pfister, Bernd Bickel, Johann G. Danzl. Dense 4D nanoscale        reconstruction of living brain tissue. Nature Methods, 2023; DOI:        10.1038/s41592-023- 01936-6       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230710113914.htm              --- up 1 year, 19 weeks, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca