Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,797 of 8,931    |
|    ScienceDaily to All    |
|    Chemists create the microspine with shap    |
|    07 Jul 23 22:30:28    |
      MSGID: 1:317/3 64a8e69c       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Chemists create the microspine with shape-transforming properties for       targeted cargo delivery at microscale                Date:        July 7, 2023        Source:        The University of Hong Kong        Summary:        With the goal of advancing biomimetic microscale materials, the        research team has developed a new method to create microscale        superstructures, called MicroSpine, that possess both soft        and hard materials which mimic the spine structure and can        act as microactuators with shape-transforming properties. This        breakthrough was achieved through colloidal assembly, a simple        process in which nano- and microparticles spontaneously organize        into ordered spatial patterns.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       In nature, it is common to find structures that combine both soft and       hard material. These structures are responsible for diverse mechanical       properties and functions of biological systems. As a typical example,       the human spine possesses alternating stacks of hard bones and soft       intervertebral discs, which is an essential architecture that supports the       human body while maintaining body flexibility. Mimicking the soft-hard       structure in nature can, in principle, inspire the design of artificial       materials and devices, such as actuators and robots. However, the       realisation has been extremely challenging, especially at the microscale,       where material integration and manipulation become exceedingly less       practical.              With the goal of advancing biomimetic microscale materials, the       research team led by Dr Yufeng WANG from the Department of Chemistry       of The University of Hong Kong (HKU) has developed a new method to       create microscale superstructures, called MicroSpine, that possess       both soft and hard materials which mimic the spine structure and       can act as microactuators with shape- transforming properties. This       breakthrough, published in the top scientific journal Science Advances,       was achieved through colloidal assembly, a simple process in which nano-       and microparticles spontaneously organise into ordered spatial patterns.              Many biological organisms, ranging from mammals to arthropods and       microorganisms, contain structures of synergistically integrated soft       and hard components. These structures exist in different lengths,       from micrometres to centimetres, and account for the characteristic       mechanical functions of biological systems. They have also stimulated       the creation of artificial materials and devices, such as actuators and       robots, which change shape, move, or actuate according to external cues.              Although soft-hard structures are easy to fabricate at the macroscale       (millimetre and above), they are much harder to realise at the microscale       (micrometre and below). This is because it becomes increasingly       challenging to integrate and manipulate mechanically distinct components       at smaller scale.              Traditional manufacturing methods, such as lithography, face several       limitations when attempting to create small-scale components using       top-down strategies. For example, low yield can occur because small-scale       manufacturing processes are more complex and require greater precision,       which can increase the risk of defects and errors in the final product.              To tackle the challenge, Dr Wang and his team took a different approach,       called colloidal assembly. Colloids are tiny particles 1/100 the size       of human hair and can be made from various materials. When properly       engineered, the particles can interact with one another, spontaneously       assembling into ordered superstructures. As a bottom-up method,       colloidal assembly is advantageous for making microscale structures       because it allows for precise control over the creation of the desired       structures from various building blocks, possessing a higher yield. Yet,       the difficulty is how to guide the particles to assemble to the desired       soft-hard structure.              By using the spine as a basis for design, the team has invented new       particles derived from metal-organic frameworks (MOFs), an emerging       material that can assemble with high directionality and specificity. Being       also the hard component, these MOF particles can combine with soft       liquid droplets to form linear chains. The hard and soft components       take alternating positions in the chain, mimicking the spine structure,       that is, the MicroSpine.              'We also introduce a mechanism by which the soft component of the chain       can expand and shrink when MicroSpine is heated or cooled, so it can       change shape reversibly,' explained Ms Dengping LYU, the first author of       the paper, as well as the PhD Candidate in the Department of Chemistry       at HKU.              Using the MicroSpine system, the team also demonstrated various precise       actuation modes when the soft parts of the chain are selectively       modified. In addition, the chains have been used for encapsulation and       release of guest objects, solely controlled by temperature.              The realisation of these functions is significant for the future       development of the system, as it could lead to the creation of intelligent       microrobots capable of performing sophisticated microscale tasks, such       as drug delivery, localised sensing and other applications. The highly       uniform and precisely structured microscale components could be used to       create more effective drug delivery systems or sensors that can detect       specific molecules with high sensitivity and accuracy.              The research team believes this technology represents an important step       towards creating complex microscale devices and machines. According to       Dr Wang, 'If you think about modern machinery such as cars, they are       assembled by tens of thousands of different parts. We aim to achieve       the same level of complexity using different colloidal parts.' By taking       inspiration from nature, the research team hopes to design more biomimetic       systems that can perform complex tasks at the microscale and beyond.              The research is funded by the Research Grants Council (RGC).               * RELATED_TOPICS        o Plants_&_Animals        # Biotechnology_and_Bioengineering # Biotechnology #        Nature # Evolutionary_Biology        o Matter_&_Energy        # Materials_Science # Chemistry # Nanotechnology #        Civil_Engineering        * RELATED_TERMS        o Materials_science o Nanoparticle o Nanotechnology o Metallurgy        o Artificial_reef o Hygroscopy o Triboelectric_effect o        Carbon_nanotube              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Six_Foods_to_Boost_Cardiovascular_Health        * Cystic_Fibrosis:_Lasting_Improvement *        Artificial_Cells_Demonstrate_That_'Life_...               * Advice_to_Limit_High-Fat_Dairy_Foods_Challenged        * First_Snapshots_of_Fermion_Pairs *        Why_No_Kangaroos_in_Bali;_No_Tigers_in_Australia        * New_Route_for_Treating_Cancer:_Chromosomes *        Giant_Stone_Artefacts_Found:_Prehistoric_Tools        * Astonishing_Secrets_of_Tunicate_Origins *        Most_Distant_Active_Supermassive_Black_Hole              Trending Topics this week       ==========================================================================       SPACE_&_TIME Asteroids,_Comets_and_Meteors Big_Bang Jupiter       MATTER_&_ENERGY Construction Materials_Science Civil_Engineering       COMPUTERS_&_MATH Educational_Technology Communications       Mathematical_Modeling                     ==========================================================================              Strange & Offbeat       ==========================================================================       SPACE_&_TIME       Quasar_'Clocks'_Show_Universe_Was_Five_Times_Slower_Soon_After_the_Big_Bang       First_'Ghost_Particle'_Image_of_Milky_Way       Gullies_on_Mars_Could_Have_Been_Formed_by_Recent_Periods_of_Liquid_Meltwater,       Study_Suggests MATTER_&_ENERGY Holograms_for_Life:_Improving_IVF_Success       Researchers_Create_Highly_Conductive_Metallic_Gel_for_3D_Printing       Artificial_Cells_Demonstrate_That_'Life_Finds_a_Way' COMPUTERS_&_MATH       Number_Cruncher_Calculates_Whether_Whales_Are_Acting_Weirdly       AI_Tests_Into_Top_1%_for_Original_Creative_Thinking       Growing_Bio-Inspired_Polymer_Brains_for_Artificial_Neural_Networks       Story Source: Materials provided by The_University_of_Hong_Kong. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Dengping Lyu, Wei Xu, Nansen Zhou, Wendi Duan, Zhisheng Wang,        Yijiang Mu,        Renjie Zhou, Yufeng Wang. Biomimetic thermoresponsive        superstructures by colloidal soft-and-hard co-assembly. Science        Advances, 2023; 9 (26) DOI: 10.1126/sciadv.adh2250       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230707111635.htm              --- up 1 year, 18 weeks, 4 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca