home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   EARTH      Uhh, that 3rd rock from the sun?      8,931 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 8,797 of 8,931   
   ScienceDaily to All   
   Chemists create the microspine with shap   
   07 Jul 23 22:30:28   
   
   MSGID: 1:317/3 64a8e69c   
   PID: hpt/lnx 1.9.0-cur 2019-01-08   
   TID: hpt/lnx 1.9.0-cur 2019-01-08   
    Chemists create the microspine with shape-transforming properties for   
   targeted cargo delivery at microscale    
      
     Date:   
         July 7, 2023   
     Source:   
         The University of Hong Kong   
     Summary:   
         With the goal of advancing biomimetic microscale materials, the   
         research team has developed a new method to create microscale   
         superstructures, called MicroSpine, that possess both soft   
         and hard materials which mimic the spine structure and can   
         act as microactuators with shape-transforming properties. This   
         breakthrough was achieved through colloidal assembly, a simple   
         process in which nano- and microparticles spontaneously organize   
         into ordered spatial patterns.   
      
      
         Facebook Twitter Pinterest LinkedIN Email   
      
   ==========================================================================   
   FULL STORY   
   ==========================================================================   
   In nature, it is common to find structures that combine both soft and   
   hard material. These structures are responsible for diverse mechanical   
   properties and functions of biological systems. As a typical example,   
   the human spine possesses alternating stacks of hard bones and soft   
   intervertebral discs, which is an essential architecture that supports the   
   human body while maintaining body flexibility. Mimicking the soft-hard   
   structure in nature can, in principle, inspire the design of artificial   
   materials and devices, such as actuators and robots. However, the   
   realisation has been extremely challenging, especially at the microscale,   
   where material integration and manipulation become exceedingly less   
   practical.   
      
   With the goal of advancing biomimetic microscale materials, the   
   research team led by Dr Yufeng WANG from the Department of Chemistry   
   of The University of Hong Kong (HKU) has developed a new method to   
   create microscale superstructures, called MicroSpine, that possess   
   both soft and hard materials which mimic the spine structure and   
   can act as microactuators with shape- transforming properties. This   
   breakthrough, published in the top scientific journal Science Advances,   
   was achieved through colloidal assembly, a simple process in which nano-   
   and microparticles spontaneously organise into ordered spatial patterns.   
      
   Many biological organisms, ranging from mammals to arthropods and   
   microorganisms, contain structures of synergistically integrated soft   
   and hard components. These structures exist in different lengths,   
   from micrometres to centimetres, and account for the characteristic   
   mechanical functions of biological systems. They have also stimulated   
   the creation of artificial materials and devices, such as actuators and   
   robots, which change shape, move, or actuate according to external cues.   
      
   Although soft-hard structures are easy to fabricate at the macroscale   
   (millimetre and above), they are much harder to realise at the microscale   
   (micrometre and below). This is because it becomes increasingly   
   challenging to integrate and manipulate mechanically distinct components   
   at smaller scale.   
      
   Traditional manufacturing methods, such as lithography, face several   
   limitations when attempting to create small-scale components using   
   top-down strategies. For example, low yield can occur because small-scale   
   manufacturing processes are more complex and require greater precision,   
   which can increase the risk of defects and errors in the final product.   
      
   To tackle the challenge, Dr Wang and his team took a different approach,   
   called colloidal assembly. Colloids are tiny particles 1/100 the size   
   of human hair and can be made from various materials. When properly   
   engineered, the particles can interact with one another, spontaneously   
   assembling into ordered superstructures. As a bottom-up method,   
   colloidal assembly is advantageous for making microscale structures   
   because it allows for precise control over the creation of the desired   
   structures from various building blocks, possessing a higher yield. Yet,   
   the difficulty is how to guide the particles to assemble to the desired   
   soft-hard structure.   
      
   By using the spine as a basis for design, the team has invented new   
   particles derived from metal-organic frameworks (MOFs), an emerging   
   material that can assemble with high directionality and specificity. Being   
   also the hard component, these MOF particles can combine with soft   
   liquid droplets to form linear chains. The hard and soft components   
   take alternating positions in the chain, mimicking the spine structure,   
   that is, the MicroSpine.   
      
   'We also introduce a mechanism by which the soft component of the chain   
   can expand and shrink when MicroSpine is heated or cooled, so it can   
   change shape reversibly,' explained Ms Dengping LYU, the first author of   
   the paper, as well as the PhD Candidate in the Department of Chemistry   
   at HKU.   
      
   Using the MicroSpine system, the team also demonstrated various precise   
   actuation modes when the soft parts of the chain are selectively   
   modified. In addition, the chains have been used for encapsulation and   
   release of guest objects, solely controlled by temperature.   
      
   The realisation of these functions is significant for the future   
   development of the system, as it could lead to the creation of intelligent   
   microrobots capable of performing sophisticated microscale tasks, such   
   as drug delivery, localised sensing and other applications. The highly   
   uniform and precisely structured microscale components could be used to   
   create more effective drug delivery systems or sensors that can detect   
   specific molecules with high sensitivity and accuracy.   
      
   The research team believes this technology represents an important step   
   towards creating complex microscale devices and machines. According to   
   Dr Wang, 'If you think about modern machinery such as cars, they are   
   assembled by tens of thousands of different parts. We aim to achieve   
   the same level of complexity using different colloidal parts.' By taking   
   inspiration from nature, the research team hopes to design more biomimetic   
   systems that can perform complex tasks at the microscale and beyond.   
      
   The research is funded by the Research Grants Council (RGC).   
      
       * RELATED_TOPICS   
             o Plants_&_Animals   
                   # Biotechnology_and_Bioengineering # Biotechnology #   
                   Nature # Evolutionary_Biology   
             o Matter_&_Energy   
                   # Materials_Science # Chemistry # Nanotechnology #   
                   Civil_Engineering   
       * RELATED_TERMS   
             o Materials_science o Nanoparticle o Nanotechnology o Metallurgy   
             o Artificial_reef o Hygroscopy o Triboelectric_effect o   
             Carbon_nanotube   
      
   ==========================================================================   
      
    Print   
      
    Email   
      
    Share   
   ==========================================================================   
   ****** 1 ****** ***** 2 ***** **** 3 ****   
   *** 4 *** ** 5 ** Breaking this hour   
   ==========================================================================   
       * Six_Foods_to_Boost_Cardiovascular_Health   
       * Cystic_Fibrosis:_Lasting_Improvement *   
       Artificial_Cells_Demonstrate_That_'Life_...   
      
       * Advice_to_Limit_High-Fat_Dairy_Foods_Challenged   
       * First_Snapshots_of_Fermion_Pairs *   
       Why_No_Kangaroos_in_Bali;_No_Tigers_in_Australia   
       * New_Route_for_Treating_Cancer:_Chromosomes *   
       Giant_Stone_Artefacts_Found:_Prehistoric_Tools   
       * Astonishing_Secrets_of_Tunicate_Origins *   
       Most_Distant_Active_Supermassive_Black_Hole   
      
   Trending Topics this week   
   ==========================================================================   
   SPACE_&_TIME Asteroids,_Comets_and_Meteors Big_Bang Jupiter   
   MATTER_&_ENERGY Construction Materials_Science Civil_Engineering   
   COMPUTERS_&_MATH Educational_Technology Communications   
   Mathematical_Modeling   
      
      
   ==========================================================================   
      
   Strange & Offbeat   
   ==========================================================================   
   SPACE_&_TIME   
   Quasar_'Clocks'_Show_Universe_Was_Five_Times_Slower_Soon_After_the_Big_Bang   
   First_'Ghost_Particle'_Image_of_Milky_Way   
   Gullies_on_Mars_Could_Have_Been_Formed_by_Recent_Periods_of_Liquid_Meltwater,   
   Study_Suggests MATTER_&_ENERGY Holograms_for_Life:_Improving_IVF_Success   
   Researchers_Create_Highly_Conductive_Metallic_Gel_for_3D_Printing   
   Artificial_Cells_Demonstrate_That_'Life_Finds_a_Way' COMPUTERS_&_MATH   
   Number_Cruncher_Calculates_Whether_Whales_Are_Acting_Weirdly   
   AI_Tests_Into_Top_1%_for_Original_Creative_Thinking   
   Growing_Bio-Inspired_Polymer_Brains_for_Artificial_Neural_Networks   
   Story Source: Materials provided by The_University_of_Hong_Kong. Note:   
   Content may be edited for style and length.   
      
      
   ==========================================================================   
   Journal Reference:   
      1. Dengping Lyu, Wei Xu, Nansen Zhou, Wendi Duan, Zhisheng Wang,   
      Yijiang Mu,   
         Renjie Zhou, Yufeng Wang. Biomimetic thermoresponsive   
         superstructures by colloidal soft-and-hard co-assembly. Science   
         Advances, 2023; 9 (26) DOI: 10.1126/sciadv.adh2250   
   ==========================================================================   
      
   Link to news story:   
   https://www.sciencedaily.com/releases/2023/07/230707111635.htm   
      
   --- up 1 year, 18 weeks, 4 days, 10 hours, 50 minutes   
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)   
   SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114   
   SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854   
   SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35   
   PATH: 317/3 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca