Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,796 of 8,931    |
|    ScienceDaily to All    |
|    Building models to predict interactions     |
|    07 Jul 23 22:30:28    |
      MSGID: 1:317/3 64a8e699       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Building models to predict interactions in plant microbiomes                Date:        July 7, 2023        Source:        ETH Zurich        Summary:        Microbiomes play a key role for plant health and could        make agriculture more sustainable -- but the principles        behind the assembly of their communities have remained largely        unknown. Researchers have shown how bacteria can compete for food,        but also cooperate thanks to differences in metabolism -- resulting        in stably structured communities. Their models can accurately        predict these interactions and can help to design microbiomes for        specific applications in the future.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Plants, animals, and humans are all home to numerous microorganisms such       as bacteria and fungi. These form complex communities that have a profound       impact on the health of their host. One notable microbiome is that of the       human gut, which helps digest our food and protect us against pathogens.              Plants are also host to microbial communities on their roots and       leaves. These communities can promote growth and keep off harmful       bacteria. Plant microbiomes therefore have the potential to make       agriculture more sustainable. However, we currently only have a       rudimentary understanding of the interspecies interactions that shape       these microbial communities.              Why is it that these communities tend to be populated only by certain       kinds of microbes and not others? "We already knew that leaf microbiomes       weren't just some random collections of microbes," says Julia Vorholt,       Professor of Microbiology at ETH Zurich. "But the rules that determine how       these communities form and what mechanisms shape their makeup remained to       be found." Now, a team of researchers led by Vorholt has identified just       such an organising principle for the bacteria that live on the leaves       of the model plant Arabidopsis thaliana(thale cress). The researchers       have developed a set of models that use the nutrient preferences and       metabolic abilities of individual bacterial strains to predict how these       leaf surface microbes compete or cooperate with each other, thereby       helping us better understand the nature of the resulting microbiome.              The research team's study, which was carried out in collaboration       with colleagues at EPFL, has been published in the latest issue of the       journal Science.              Resource competition leads to distinct interactions As part of a previous       work, Vorholt's group had already shown that the microbial communities       found on plant leaves were remarkably similar. "The consistent composition       of these communities points to an underlying mechanism that controls       how the leaf microbiome is created," Vorholt says.              Martin Scha"fer, a postdoc in Vorholt's group and co-lead author on       the study, explains that "since all bacteria ultimately depend on       organic molecules as food, we asked whether we could predict the way       they interact by knowing which food molecules they can metabolise."       Alan Pacheco, also co-lead author, adds: "in a competitive environment,       food niches could lead to stable coexistence and collaboration, with       the microbes interacting for mutual advantage by exchanging resources."       The guiding question posed by Vorholt and her team is: Can the use the       metabolic capabilities of different bacteria to understand how the leaf       microbiome takes shape? Carbon profiles reveal resource competition       To answer this question, the researchers began by testing the ability       of more than 200 representative strains of bacteria from Arabidopsis       thalianaleaves to grow using 45 different carbon sources. Using these       carbon profiles, they determined that there was extensive overlap between       the strains' food niches.              This indicates that there is fierce competition for resources.              The researchers then used these carbon profiles to build a set of reliable       metabolic models for all bacterial strains, and simulated interactions       between more than 17,500 pairs of bacteria. Consistent with the extensive       overlap in food niches, the simulations showed a marked dominance of       negative interactions: when competition causes the population of at       least one of the two strains to decrease.              Sidestepping competition through cooperation Despite this prevalence of       competition, the metabolic models also predicted positive interactions. A       closer analysis revealed that these cooperative interactions can be       traced back to the exchange of organic and amino acids. The study's       authors carried out plant experiments to test the models' predictions       and were able to confirm them to an accuracy of 89 percent.              The accuracy of the models came as a surprise even to the researchers       themselves: "The high degree of reliability suggests that our initial       assumptions about the importance of metabolic characteristics were       correct," Pacheco says.              Harnessing microbiomes for application "What's great about our models is       that they also work in reverse," Vorholt says, "in that they can be used       to identify mechanisms that trigger certain interaction patterns." This       paves the way for targeted microbiome design, which is a key prerequisite       for downstream applications in agriculture.              Currently, seed companies and agricultural chemical producers use       a process of trial and error to search for microbes that sustainably       support crop protection. The team's findings are therefore relevant not       only for fundamental research, but also for applications in microbiome       design for agriculture.              Vorholt is Co-Director of the Swiss National Centre of Competence       in Research (NCCR) Microbiomes. Her team's current study furthers the       research by a network of 20 groups, whose aim is to understand microbiomes       -- from plants to humans - - so that their vast potential for health,       agriculture, and environment can be realised.              This can be achieved by, for example, supplementing unbalanced communities       with the right microbe, removing certain species, or even treating       diseases with combinations of bacteria with special functions. Predictive       models will play a key role in this goal.               * RELATED_TOPICS        o Plants_&_Animals        # Microbes_and_More # Bacteria # Agriculture_and_Food #        Endangered_Plants        o Earth_&_Climate        # Sustainability # Weather # Geochemistry # Ecology        * RELATED_TERMS        o Sustainable_agriculture o Climate_model o Forest o Meteorology        o Agroecology o Hydroponics o Tamarix o Vegetation              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Six_Foods_to_Boost_Cardiovascular_Health        * Cystic_Fibrosis:_Lasting_Improvement *        Artificial_Cells_Demonstrate_That_'Life_...               * Advice_to_Limit_High-Fat_Dairy_Foods_Challenged        * First_Snapshots_of_Fermion_Pairs *        Why_No_Kangaroos_in_Bali;_No_Tigers_in_Australia        * New_Route_for_Treating_Cancer:_Chromosomes *        Giant_Stone_Artefacts_Found:_Prehistoric_Tools        * Astonishing_Secrets_of_Tunicate_Origins *        Most_Distant_Active_Supermassive_Black_Hole              Trending Topics this week       ==========================================================================       PLANTS_&_ANIMALS Insects_(including_Butterflies) Bacteria       Endangered_Animals EARTH_&_CLIMATE Air_Pollution Environmental_Policy       Ice_Ages FOSSILS_&_RUINS Cultures Early_Climate Human_Evolution                     ==========================================================================              Strange & Offbeat       ==========================================================================       PLANTS_&_ANIMALS       Why_There_Are_No_Kangaroos_in_Bali_(and_No_Tigers_in_Australia)       Number_Cruncher_Calculates_Whether_Whales_Are_Acting_Weirdly       Fossils_Reveal_How_Ancient_Birds_Molted_Their_Feathers_--_Which_Could_Help       Explain_Why_Ancestors_of_Modern_Birds_Survived_When_All_the_Other_Dinosaurs       Died EARTH_&_CLIMATE       Turning_Old_Maps_Into_3D_Digital_Models_of_Lost_Neighborhoods       Squash_Bugs_Are_Attracted_to_and_Eat_Each_Other's_Poop_to_Stock_Their       Microbiome How_Urea_May_Have_Been_the_Gateway_to_Life FOSSILS_&_RUINS       Giant_Stone_Artefacts_Found_on_Rare_Ice_Age_Site_in_Kent,_UK       Apex_Predator_of_the_Cambrian_Likely_Sought_Soft_Over_Crunchy_Prey       Newly_Discovered_Jurassic_Fossils_in_Texas Story Source: Materials       provided by ETH_Zurich. Original written by Michael Keller. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Martin Scha"fer, Alan R. Pacheco, Rahel Ku"nzler, Miriam        Bortfeld-Miller,        Christopher M. Field, Evangelia Vayena, Vassily Hatzimanikatis,        Julia A.               Vorholt. Metabolic interaction models recapitulate leaf microbiota        ecology. Science, 2023; 381 (6653) DOI: 10.1126/science.adf5121       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230707111638.htm              --- up 1 year, 18 weeks, 4 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca