Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,793 of 8,931    |
|    ScienceDaily to All    |
|    AI tool decodes brain cancer's genome du    |
|    07 Jul 23 22:30:28    |
      MSGID: 1:317/3 64a8e690       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        AI tool decodes brain cancer's genome during surgery         Real-time tumor profiling can guide surgical, treatment decisions                Date:        July 7, 2023        Source:        Harvard Medical School        Summary:        New AI tool enables in-surgery genomic profiling of gliomas, the        most aggressive and most common brain tumors. This information        offers critical clues about how aggressive a cancer is, its        future behavior, and its likely response to treatment. The tool        can provide real-time guidance to surgeons on the optimal surgical        approach for removal of cancerous tissue.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Scientists have designed an AI tool that can rapidly decode a brain       tumor's DNA to determine its molecular identity during surgery -- critical       information that under the current approach can take a few days and up       to a few weeks.              Knowing a tumor's molecular type enables neurosurgeons to make decisions       such as how much brain tissue to remove and whether to place tumor-killing       drugs directly into the brain -- while the patient is still on the       operating table.              A report on the work, led by Harvard Medical School researchers, is       published July 7 in the journalMed.              Accurate molecular diagnosis -- which details DNA alterations in a cell -       - during surgery can help a neurosurgeon decide how much brain tissue to       remove. Removing too much when the tumor is less aggressive can affect       a patient's neurologic and cognitive function. Likewise, removing too       little when the tumor is highly aggressive may leave behind malignant       tissue that can grow and spread quickly.              "Right now, even state-of-the-art clinical practice cannot profile       tumors molecularly during surgery. Our tool overcomes this challenge by       extracting thus-far untapped biomedical signals from frozen pathology       slides," said study senior author Kun-Hsing Yu, assistant professor of       biomedical informatics in the Blavatnik Institute at HMS.              Knowing a tumor's molecular identity during surgery is also valuable       because certain tumors benefit from on-the-spot treatment with drug-coated       wafers placed directly into the brain at the time of the operation,       Yu said.              "The ability to determine intraoperative molecular diagnosis in real       time, during surgery, can propel the development of real-time precision       oncology," Yu added.              The standard intraoperative diagnostic approach used now involves taking       brain tissue, freezing it, and examining it under a microscope. A major       drawback is that freezing the tissue tends to alter the appearance of       cells under a microscope and can interfere with the accuracy of clinical       evaluation.              Furthermore, the human eye, even when using potent microscopes, cannot       reliably detect subtle genomic variations on a slide.              The new AI approach overcomes these challenges.              The tool, called CHARM (Cryosection Histopathology Assessment and Review       Machine), is freely available to other researchers. It still has to be       clinically validated through testing in real-world settings and cleared       by the FDA before deployment in hospitals, the research team said.              Cracking cancer's molecular code Recent advances in genomics have       allowed pathologists to differentiate the molecular signatures -- and       the behaviors that such signatures portend - - across various types       of brain cancer as well as within specific types of brain cancer. For       example, glioma -- the most aggressive brain tumor and the most common       form of brain cancer -- has three main subvariants that carry different       molecular markers and have different propensities for growth and spread.              The new tool's ability to expedite molecular diagnosis could be       particularly valuable in areas with limited access to technology to       perform rapid cancer genetic sequencing.              Beyond the decisions made during surgery, knowledge of a tumor's       molecular type provides clues about its aggressiveness, behavior,       and likely response to various treatments. Such knowledge can inform       post-operative decisions.              Furthermore, the new tool enables during-surgery diagnoses aligned with       the World Health Organization's recently updated classification system       for diagnosing and grading the severity of gliomas, which calls for such       diagnoses to be made based on a tumor's genomic profile.              Training CHARM CHARM was developed using 2,334 brain tumor samples from       1,524 people with glioma from three different patient populations. When       tested on a never-before- seen set of brain samples, the tool       distinguished tumors with specific molecular mutations at 93 percent       accuracy and successfully classified three major types of gliomas with       distinct molecular features that carry different prognoses and respond       differently to treatments.              Going a step further, the tool successfully captured visual       characteristics of the tissue surrounding the malignant cells. It was       capable of spotting telltale areas with greater cellular density and       more cell death within samples, both of which signal more aggressive       glioma types.              The tool was also able to pinpoint clinically important molecular       alterations in a subset of low-grade gliomas, a subtype of glioma that       is less aggressive and therefore less likely to invade surrounding       tissue. Each of these changes also signals different propensity for       growth, spread, and treatment response.              The tool further connected the appearance of the cells -- the shape of       their nuclei, the presence of edema around the cells -- with the molecular       profile of the tumor. This means that the algorithm can pinpoint how a       cell's appearance relates to the molecular type of a tumor.              This ability to assess the broader context around the image renders the       model more accurate and closer to how a human pathologist would visually       assess a tumor sample, Yu said.              The researchers say that while the model was trained and tested on       glioma samples, it could be successfully retrained to identify other       brain cancer subtypes.              Scientists have already designed AI models to profile other types of       cancer - - colon, lung, breast -- but gliomas have remained particularly       challenging due to their molecular complexity and huge variation in       tumor cells' shape and appearance.              The CHARM tool would have to be retrained periodically to reflect new       disease classifications as they emerge from new knowledge, Yu said.              "Just like human clinicians who must engage in ongoing education and       training, AI tools must keep up with the latest knowledge to remain at       peak performance." Authorship, funding, disclosures Coinvestigators       included MacLean P. Nasrallah, Junhan Zhao, Cheng Che Tsai, David       Meredith, Eliana Marostica, Keith L. Ligon, and Jeffrey A. Golden.              This work was supported in part by the National Institute of General       Medical Sciences grant R35GM142879, the Google Research Scholar Award,       the Blavatnik Center for Computational Biomedicine Award, the Partners       Innovation Discovery Grant, and the Schlager Family Award for Early-Stage       Digital Health Innovations.               * RELATED_TOPICS        o Health_&_Medicine        # Brain_Tumor # Cancer # Lung_Cancer        o Mind_&_Brain        # Brain-Computer_Interfaces # Intelligence # Brain_Injury        o Computers_&_Math        # Neural_Interfaces # Computer_Modeling # Communications        * RELATED_TERMS        o Histology o Cancer o Robotic_surgery o Aggression o Surgery        o Colorectal_cancer o Breast_cancer o Bullying              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Six_Foods_to_Boost_Cardiovascular_Health        * Cystic_Fibrosis:_Lasting_Improvement *        Artificial_Cells_Demonstrate_That_'Life_...               * Advice_to_Limit_High-Fat_Dairy_Foods_Challenged        * First_Snapshots_of_Fermion_Pairs *        Why_No_Kangaroos_in_Bali;_No_Tigers_in_Australia        * New_Route_for_Treating_Cancer:_Chromosomes *        Giant_Stone_Artefacts_Found:_Prehistoric_Tools        * Astonishing_Secrets_of_Tunicate_Origins *        Most_Distant_Active_Supermassive_Black_Hole              Trending Topics this week       ==========================================================================       HEALTH_&_MEDICINE Birth_Defects Cholesterol       Patient_Education_and_Counseling MIND_&_BRAIN Autism Creativity Depression       LIVING_&_WELL Healthy_Aging Fitness Nutrition                     ==========================================================================              Strange & Offbeat       ==========================================================================       HEALTH_&_MEDICINE Holograms_for_Life:_Improving_IVF_Success       Grocery_Store_Carts_Set_to_Help_Diagnose_Common_Heart_Rhythm_Disorder_and       Prevent_Stroke DNA_Can_Fold_Into_Complex_Shapes_to_Execute_New_Functions       MIND_&_BRAIN AI_Tests_Into_Top_1%_for_Original_Creative_Thinking       Everyone's_Brain_Has_a_Pain_Fingerprint_--_New_Research_Has_Revealed_for_the       First_Time       Scientists_Discover_Spiral-Shaped_Signals_That_Organize_Brain_Activity       LIVING_&_WELL Illusions_Are_in_the_Eye,_Not_the_Mind       Amputees_Feel_Warmth_in_Their_Missing_Hand       Why_Do_Champagne_Bubbles_Rise_the_Way_They_Do?_Scientists'_New_Discovery_Is       Worthy_of_a_Toast Story Source: Materials provided by       Harvard_Medical_School. Original written by Ekaterina Pesheva. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. MacLean P. Nasrallah, Junhan Zhao, Cheng Che Tsai, David Meredith,        Eliana        Marostica, Keith L. Ligon, Jeffrey A. Golden, Kun-Hsing Yu. Machine        learning for cryosection pathology predicts the 2021 WHO        classification of glioma. Med, 2023; DOI: 10.1016/j.medj.2023.06.002       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230707111646.htm              --- up 1 year, 18 weeks, 4 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca