Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,779 of 8,931    |
|    ScienceDaily to All    |
|    Machine learning takes materials modelin    |
|    07 Jul 23 22:30:28    |
      MSGID: 1:317/3 64a8e666       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Machine learning takes materials modeling into new era         Deep learning approach enables accurate electronic structure calculations       at large scales                Date:        July 7, 2023        Source:        Helmholtz-Zentrum Dresden-Rossendorf        Summary:        The arrangement of electrons in matter, known as the electronic        structure, plays a crucial role in fundamental but also applied        research such as drug design and energy storage. However, the        lack of a simulation technique that offers both high fidelity and        scalability across different time and length scales has long been        a roadblock for the progress of these technologies. Researchers        have now pioneered a machine learning- based simulation method        that supersedes traditional electronic structure simulation        techniques. Their Materials Learning Algorithms (MALA) software        stack enables access to previously unattainable length scales.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       The arrangement of electrons in matter, known as the electronic structure,       plays a crucial role in fundamental but also applied research such as drug       design and energy storage. However, the lack of a simulation technique       that offers both high fidelity and scalability across different time       and length scales has long been a roadblock for the progress of these       technologies.              Researchers from the Center for Advanced Systems Understanding (CASUS)       at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in Go"rlitz, Germany,       and Sandia National Laboratories in Albuquerque, New Mexico, USA, have now       pioneered a machine learning-based simulation method (npj Computational       Materials), that supersedes traditional electronic structure simulation       techniques. Their Materials Learning Algorithms (MALA) software stack       enables access to previously unattainable length scales.              Electrons are elementary particles of fundamental importance. Their       quantum mechanical interactions with one another and with atomic nuclei       give rise to a multitude of phenomena observed in chemistry and materials       science.              Understanding and controlling the electronic structure of matter provides       insights into the reactivity of molecules, the structure and energy       transport within planets, and the mechanisms of material failure.              Scientific challenges are increasingly being addressed through       computational modeling and simulation, leveraging the capabilities of       high-performance computing. However, a significant obstacle to achieving       realistic simulations with quantum precision is the lack of a predictive       modeling technique that combines high accuracy with scalability across       different length and time scales. Classical atomistic simulation methods       can handle large and complex systems, but their omission of quantum       electronic structure restricts their applicability. Conversely, simulation       methods which do not rely on assumptions such as empirical modeling and       parameter fitting (first principles methods) provide high fidelity but       are computationally demanding. For instance, density functional theory       (DFT), a widely used first principles method, exhibits cubic scaling with       system size, thus restricting its predictive capabilities to small scales.              Hybrid approach based on deep learning The team of researchers now       presented a novel simulation method called the Materials Learning       Algorithms (MALA) software stack. In computer science, a software stack       is a collection of algorithms and software components that are combined       to create a software application for solving a particular problem.              Lenz Fiedler, a Ph.D. student and key developer of MALA at CASUS,       explains, "MALA integrates machine learning with physics-based approaches       to predict the electronic structure of materials. It employs a hybrid       approach, utilizing an established machine learning method called deep       learning to accurately predict local quantities, complemented by physics       algorithms for computing global quantities of interest." The MALA       software stack takes the arrangement of atoms in space as input and       generates fingerprints known as bispectrum components, which encode the       spatial arrangement of atoms around a Cartesian grid point. The machine       learning model in MALA is trained to predict the electronic structure       based on this atomic neighborhood. A significant advantage of MALA is its       machine learning model's ability to be independent of the system size,       allowing it to be trained on data from small systems and deployed at       any scale.              In their publication, the team of researchers showcased the remarkable       effectiveness of this strategy. They achieved a speedup of over 1,000       times for smaller system sizes, consisting of up to a few thousand       atoms, compared to conventional algorithms. Furthermore, the team       demonstrated MALA's capability to accurately perform electronic structure       calculations at a large scale, involving over 100,000 atoms. Notably,       this accomplishment was achieved with modest computational effort,       revealing the limitations of conventional DFT codes.              Attila Cangi, the Acting Department Head of Matter under Extreme       Conditions at CASUS, explains: "As the system size increases and more       atoms are involved, DFT calculations become impractical, whereas MALA's       speed advantage continues to grow. The key breakthrough of MALA lies in       its capability to operate on local atomic environments, enabling accurate       numerical predictions that are minimally affected by system size. This       groundbreaking achievement opens up computational possibilities that       were once considered unattainable." Boost for applied research expected       Cangi aims to push the boundaries of electronic structure calculations       by leveraging machine learning: "We anticipate that MALA will spark a       transformation in electronic structure calculations, as we now have a       method to simulate significantly larger systems at an unprecedented       speed. In the future, researchers will be able to address a broad       range of societal challenges based on a significantly improved baseline,       including developing new vaccines and novel materials for energy storage,       conducting large-scale simulations of semiconductor devices, studying       material defects, and exploring chemical reactions for converting       the atmospheric greenhouse gas carbon dioxide into climate-friendly       minerals." Furthermore, MALA's approach is particularly suited for       high-performance computing (HPC). As the system size grows, MALA enables       independent processing on the computational grid it utilizes, effectively       leveraging HPC resources, particularly graphical processing units. Siva       Rajamanickam, a staff scientist and expert in parallel computing at the       Sandia National Laboratories, explains, "MALA's algorithm for electronic       structure calculations maps well to modern HPC systems with distributed       accelerators. The capability to decompose work and execute in parallel       different grid points across different accelerators makes MALA an       ideal match for scalable machine learning on HPC resources, leading to       unparalleled speed and efficiency in electronic structure calculations."       Apart from the developing partners HZDR and Sandia National Laboratories,       MALA is already employed by institutions and companies such as the       Georgia Institute of Technology, the North Carolina A&T State University,       Sambanova Systems Inc., and Nvidia Corp.               * RELATED_TOPICS        o Matter_&_Energy        # Physics # Electronics # Materials_Science # Construction        o Computers_&_Math        # Computer_Modeling # Software # Computers_and_Internet        # Spintronics_Research        * RELATED_TERMS        o Circuit_design o Supercomputer o Computer_software o        Computer_simulation o Metal o Time_in_physics o Capacitor        o Artificial_intelligence              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Six_Foods_to_Boost_Cardiovascular_Health        * Cystic_Fibrosis:_Lasting_Improvement *        Artificial_Cells_Demonstrate_That_'Life_...               * Advice_to_Limit_High-Fat_Dairy_Foods_Challenged        * First_Snapshots_of_Fermion_Pairs *        Why_No_Kangaroos_in_Bali;_No_Tigers_in_Australia        * New_Route_for_Treating_Cancer:_Chromosomes *        Giant_Stone_Artefacts_Found:_Prehistoric_Tools        * Astonishing_Secrets_of_Tunicate_Origins *        Most_Distant_Active_Supermassive_Black_Hole              Trending Topics this week       ==========================================================================       SPACE_&_TIME Asteroids,_Comets_and_Meteors Big_Bang Jupiter       MATTER_&_ENERGY Construction Materials_Science Civil_Engineering       COMPUTERS_&_MATH Educational_Technology Communications       Mathematical_Modeling                     ==========================================================================              Strange & Offbeat       ==========================================================================       SPACE_&_TIME       Quasar_'Clocks'_Show_Universe_Was_Five_Times_Slower_Soon_After_the_Big_Bang       First_'Ghost_Particle'_Image_of_Milky_Way       Gullies_on_Mars_Could_Have_Been_Formed_by_Recent_Periods_of_Liquid_Meltwater,       Study_Suggests MATTER_&_ENERGY Holograms_for_Life:_Improving_IVF_Success       Researchers_Create_Highly_Conductive_Metallic_Gel_for_3D_Printing       Artificial_Cells_Demonstrate_That_'Life_Finds_a_Way' COMPUTERS_&_MATH       Number_Cruncher_Calculates_Whether_Whales_Are_Acting_Weirdly       AI_Tests_Into_Top_1%_for_Original_Creative_Thinking       Growing_Bio-Inspired_Polymer_Brains_for_Artificial_Neural_Networks Story       Source: Materials provided by Helmholtz-Zentrum_Dresden-Rossendorf. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Lenz Fiedler, Normand A. Modine, Steve Schmerler, Dayton J. Vogel,        Gabriel A. Popoola, Aidan P. Thompson, Sivasankaran Rajamanickam,        Attila Cangi. Predicting electronic structures at any length scale        with machine learning. npj Computational Materials, 2023; 9 (1)        DOI: 10.1038/s41524- 023-01070-z       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230707111625.htm              --- up 1 year, 18 weeks, 4 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca