Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,767 of 8,931    |
|    ScienceDaily to All    |
|    Researchers grow precise arrays of nanoL    |
|    06 Jul 23 22:30:34    |
      MSGID: 1:317/3 64a79529       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Researchers grow precise arrays of nanoLEDs         A new technique produces perovskite nanocrystals right where they're       needed, so the exceedingly delicate materials can be integrated into nanoscale       devices.                Date:        July 6, 2023        Source:        Massachusetts Institute of Technology        Summary:        A new platform enables researchers to 'grow' halide perovskite        nanocrystals with precise control over the location and size        of each individual crystal, integrating them into nanoscale        light-emitting diodes.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Halide perovskites are a family of materials that have attracted attention       for their superior optoelectronic properties and potential applications       in devices such as high-performance solar cells, light-emitting diodes,       and lasers.              These materials have largely been implemented into thin-film or       micron-sized device applications. Precisely integrating these materials       at the nanoscale could open up even more remarkable applications, like       on-chip light sources, photodetectors, and memristors. However, achieving       this integration has remained challenging because this delicate material       can be damaged by conventional fabrication and patterning techniques.              To overcome this hurdle, MIT researchers created a technique that       allows individual halide perovskite nanocrystals to be grown on-site       where needed with precise control over location, to within less than 50       nanometers. (A sheet of paper is 100,000 nanometers thick.) The size of       the nanocrystals can also be precisely controlled through this technique,       which is important because size affects their characteristics. Since       the material is grown locally with the desired features, conventional       lithographic patterning steps that could introduce damage are not needed.              The technique is also scalable, versatile, and compatible with       conventional fabrication steps, so it can enable the nanocrystals to be       integrated into functional nanoscale devices. The researchers used this       to fabricate arrays of nanoscale light-emitting diodes (nanoLEDs) --       tiny crystals that emit light when electrically activated. Such arrays       could have applications in optical communication and computing, lensless       microscopes, new types of quantum light sources, and high-density,       high-resolution displays for augmented and virtual reality.              "As our work shows, it is critical to develop new engineering frameworks       for integration of nanomaterials into functional nanodevices. By moving       past the traditional boundaries of nanofabrication, materials engineering,       and device design, these techniques can allow us to manipulate matter       at the extreme nanoscale dimensions, helping us realize unconventional       device platforms important to addressing emerging technological needs,"       says Farnaz Niroui, the EE Landsman Career Development Assistant Professor       of Electrical Engineering and Computer Science (EECS), a member of the       Research Laboratory of Electronics (RLE), and senior author of a new       paper describing the work.              Niroui's co-authors include lead author Patricia Jastrzebska-Perfect,       an EECS graduate student; Weikun "Spencer" Zhu, a graduate student in       the Department of Chemical Engineering; Mayuran Saravanapavanantham,       Sarah Spector, Roberto Brenes, and Peter Satterthwaite, all EECS       graduate students; Zheng Li, an RLE postdoc; and Rajeev Ram, professor       of electrical engineering. The research will be published in Nature       Communications.              Tiny crystals, huge challenges Integrating halide perovskites into       on-chip nanoscale devices is extremely difficult using conventional       nanoscale fabrication techniques. In one approach, a thin film of fragile       perovskites may be patterned using lithographic processes, which require       solvents that may damage the material. In another approach, smaller       crystals are first formed in solution and then picked and placed from       solution in the desired pattern.              "In both cases there is a lack of control, resolution, and integration       capability, which limits how the material can be extended to nanodevices,"       Niroui says.              Instead, she and her team developed an approach to "grow" halide       perovskite crystals in precise locations directly onto the desired       surface where the nanodevice will then be fabricated.              Core to their process is to localize the solution that is used in the       nanocrystal growth. To do so, they create a nanoscale template with       small wells that contain the chemical process through which crystals       grow. They modify the surface of the template and the inside of the       wells, controlling a property known as "wettability" so a solution       containing perovskite material won't pool on the template surface and       will be confined inside the wells.              "Now, you have these very small and deterministic reactors within which       the material can grow," she says.              And that is exactly what happens. They apply a solution containing halide       perovskite growth material to the template and, as the solvent evaporates,       the material grows and forms a tiny crystal in each well.              A versatile and tunable technique The researchers found that the       shape of the wells plays a critical role in controlling the nanocrystal       positioning. If square wells are used, due to the influence of nanoscale       forces, the crystals have an equal chance of being placed in each of       the well's four corners. For some applications, that might be good       enough, but for others, it is necessary to have a higher precision in       the nanocrystal placement.              By changing the shape of the well, the researchers were able to engineer       these nanoscale forces in such a way that a crystal is preferentially       placed in the desired location.              As the solvent evaporates inside the well, the nanocrystal experiences       a pressure gradient that creates a directional force, with the exact       direction being determined using the well's asymmetric shape.              "This allows us to have very high precision, not only in growth, but       also in the placement of these nanocrystals," Niroui says.              They also found they could control the size of the crystal that forms       inside a well. Changing the size of the wells to allow more or less       growth solution inside generates larger or smaller crystals.              They demonstrated the effectiveness of their technique by fabricating       precise arrays of nanoLEDs. In this approach, each nanocrystal is made       into a nanopixel which emits light. These high-density nanoLED arrays       could be used for on-chip optical communication and computing, quantum       light sources, microscopy, and high-resolution displays for augmented       and virtual reality applications.              In the future, the researchers want to explore more potential applications       for these tiny light sources. They also want to test the limits of how       small these devices can be, and work to effectively incorporate them       into quantum systems.              Beyond nanoscale light sources, the process also opens up other       opportunities for developing halide perovskite-based on-chip nanodevices.              Their technique also provides an easier way for researchers to study       materials at the individual nanocrystal level, which they hope will       inspire others to conduct additional studies on these and other unique       materials.              "Studying nanoscale materials through high-throughput methods often       requires that the materials are precisely localized and engineered at       that scale," Jastrzebska-Perfect adds. "By providing that localized       control, our technique can improve how researchers investigate and tune       the properties of materials for diverse applications." This work was       supported, in part, by the National Science Foundation and the MIT Center       for Quantum Engineering.               * RELATED_TOPICS        o Matter_&_Energy        # Nanotechnology # Materials_Science # Optics # Physics        # Engineering_and_Construction # Civil_Engineering #        Graphene # Engineering        * RELATED_TERMS        o Gallium o Nanorobotics o Crystal_structure o Supercooling        o Global_Positioning_System o Quantum_dot o Scale_model o        Scientific_method              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * First_Snapshots_of_Fermion_Pairs *        Why_No_Kangaroos_in_Bali;_No_Tigers_in_Australia        * New_Route_for_Treating_Cancer:_Chromosomes *        Giant_Stone_Artefacts_Found:_Prehistoric_Tools        * Astonishing_Secrets_of_Tunicate_Origins *        Most_Distant_Active_Supermassive_Black_Hole *        Creative_People_Enjoy_Idle_Time_More_Than_Others        * Restoring_Fragile_X_Protein_Production *        Earth's_Solid_Metal_Sphere_Is_'Textured' *        Elephants_Vary_Their_Dinner_Menu_Day-To-Day              Trending Topics this week       ==========================================================================       SPACE_&_TIME Asteroids,_Comets_and_Meteors Big_Bang Jupiter       MATTER_&_ENERGY Biochemistry Construction Engineering_and_Construction       COMPUTERS_&_MATH Educational_Technology Communications       Mathematical_Modeling                     ==========================================================================              Strange & Offbeat       ==========================================================================       SPACE_&_TIME       Quasar_'Clocks'_Show_Universe_Was_Five_Times_Slower_Soon_After_the_Big_Bang       First_'Ghost_Particle'_Image_of_Milky_Way       Gullies_on_Mars_Could_Have_Been_Formed_by_Recent_Periods_of_Liquid_Meltwater,       Study_Suggests MATTER_&_ENERGY Holograms_for_Life:_Improving_IVF_Success       Researchers_Create_Highly_Conductive_Metallic_Gel_for_3D_Printing       Growing_Bio-Inspired_Polymer_Brains_for_Artificial_Neural_Networks       COMPUTERS_&_MATH       Number_Cruncher_Calculates_Whether_Whales_Are_Acting_Weirdly       AI_Tests_Into_Top_1%_for_Original_Creative_Thinking       Displays_Controlled_by_Flexible_Fins_and_Liquid_Droplets_More_Versatile,       Efficient_Than_LED_Screens Story Source: Materials provided by       Massachusetts_Institute_of_Technology. Original written by Adam       Zewe. Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Patricia Jastrzebska-Perfect, Weikun Zhu, Mayuran        Saravanapavanantham,        Zheng Li, Sarah O. Spector, Roberto Brenes, Peter F. Satterthwaite,        Rajeev J. Ram, Farnaz Niroui. On-site growth of perovskite        nanocrystal arrays for integrated nanodevices. Nature        Communications, 2023; 14 (1) DOI: 10.1038/s41467-023-39488-0       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230706124613.htm              --- up 1 year, 18 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca