Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,747 of 8,931    |
|    ScienceDaily to All    |
|    AI finds a way to people's hearts (liter    |
|    06 Jul 23 22:30:32    |
      MSGID: 1:317/3 64a794ed       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        AI finds a way to people's hearts (literally!)         Unveiling a groundbreaking and accurate AI-based method to classify       cardiac function and disease using chest X-Rays                Date:        July 6, 2023        Source:        Osaka Metropolitan University        Summary:        Scientists have successfully developed a model that utilizes        AI to accurately classify cardiac functions and valvular heart        diseases from chest radiographs. The Area Under the Curve, or AUC,        of the AI classification showed a high level of accuracy, exceeding        0.85 for almost all indicators and reaching 0.92 for detecting        left ventricular ejection fraction -- an important measure for        monitoring cardiac function.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       AI (artificial intelligence) may sound like a cold robotic system, but       Osaka Metropolitan University scientists have shown that it can deliver       heartwarming -- or, more to the point, "heart-warning" -- support. They       unveiled an innovative use of AI that classifies cardiac functions       and pinpoints valvular heart disease with unprecedented accuracy,       demonstrating continued progress in merging the fields of medicine and       technology to advance patient care. The results will be published in       The Lancet Digital Health.              Valvular heart disease, one cause of heart failure, is often       diagnosed using echocardiography. This technique, however, requires       specialized skills, so there is a corresponding shortage of qualified       technicians. Meanwhile, chest radiography is one of the most common tests       to identify diseases, primarily of the lungs. Even though the heart is       also visible in chest radiographs, little was known heretofore about the       ability of chest radiographs to detect cardiac function or disease. Chest       radiographs, or chest X-Rays, are performed in many hospitals and very       little time is required to conduct them, making them highly accessible       and reproducible. Accordingly, the research team led by Dr. Daiju Ueda,       from the Department of Diagnostic and Interventional Radiology at the       Graduate School of Medicine of Osaka Metropolitan University, reckoned       that if cardiac function and disease could be determined from chest       radiographs, this test could serve as a supplement to echocardiography.              Dr. Ueda's team successfully developed a model that utilizes AI to       accurately classify cardiac functions and valvular heart diseases from       chest radiographs.              Since AI trained on a single dataset faces potential bias, leading to       low accuracy, the team aimed for multi-institutional data. Accordingly,       a total of 22,551 chest radiographs associated with 22,551 echocardiograms       were collected from 16,946 patients at four facilities between 2013 and       2021. With the chest radiographs set as input data and the echocardiograms       set as output data, the AI model was trained to learn features connecting       both datasets.              The AI model was able to categorize precisely six selected types of       valvular heart disease, with the Area Under the Curve, or AUC, ranging       from 0.83 to 0.92. (AUC is a rating index that indicates the capability of       an AI model and uses a value range from 0 to 1, with the closer to 1, the       better.) The AUC was 0.92 at a 40% cut-off for detecting left ventricular       ejection fraction -- an important measure for monitoring cardiac function.              "It took us a very long time to get to these results, but I believe this       is significant research," stated Dr. Ueda. "In addition to improving       the efficiency of doctors' diagnoses, the system might also be used       in areas where there are no specialists, in night-time emergencies,       and for patients who have difficulty undergoing echocardiography."        * RELATED_TOPICS        o Health_&_Medicine        # Heart_Disease # Mesothelioma # Stroke_Prevention #        Diseases_and_Conditions        o Computers_&_Math        # Computer_Modeling # Mathematical_Modeling # Mathematics        # Information_Technology        * RELATED_TERMS        o Defibrillation o Artificial_heart o CPR o Electrocardiogram        o Heart_failure o Heart o Heart_rate o South_Beach_diet              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * First_Snapshots_of_Fermion_Pairs *        Why_No_Kangaroos_in_Bali;_No_Tigers_in_Australia        * New_Route_for_Treating_Cancer:_Chromosomes *        Giant_Stone_Artefacts_Found:_Prehistoric_Tools        * Astonishing_Secrets_of_Tunicate_Origins *        Most_Distant_Active_Supermassive_Black_Hole *        Creative_People_Enjoy_Idle_Time_More_Than_Others        * Restoring_Fragile_X_Protein_Production *        Earth's_Solid_Metal_Sphere_Is_'Textured' *        Elephants_Vary_Their_Dinner_Menu_Day-To-Day              Trending Topics this week       ==========================================================================       HEALTH_&_MEDICINE Patient_Education_and_Counseling Birth_Defects       Cholesterol MIND_&_BRAIN Educational_Psychology Stroke Autism       LIVING_&_WELL Fitness Healthy_Aging Nutrition                     ==========================================================================              Strange & Offbeat       ==========================================================================       HEALTH_&_MEDICINE Holograms_for_Life:_Improving_IVF_Success       Grocery_Store_Carts_Set_to_Help_Diagnose_Common_Heart_Rhythm_Disorder_and       Prevent_Stroke DNA_Can_Fold_Into_Complex_Shapes_to_Execute_New_Functions       MIND_&_BRAIN AI_Tests_Into_Top_1%_for_Original_Creative_Thinking       Everyone's_Brain_Has_a_Pain_Fingerprint_--_New_Research_Has_Revealed_for_the       First_Time       Scientists_Discover_Spiral-Shaped_Signals_That_Organize_Brain_Activity       LIVING_&_WELL Illusions_Are_in_the_Eye,_Not_the_Mind       Amputees_Feel_Warmth_in_Their_Missing_Hand       Why_Do_Champagne_Bubbles_Rise_the_Way_They_Do?_Scientists'_New_Discovery_Is       Worthy_of_a_Toast Story Source: Materials provided by       Osaka_Metropolitan_University. Note: Content may be edited for style       and length.                     ==========================================================================       Journal Reference:        1. Daiju Ueda et al. Artificial intelligence-based model to classify        cardiac        functions from chest radiographs: a multi-institutional,        retrospective model development and validation study. The Lancet        Digital Health, 2023 DOI: 10.1016/S2589-7500(23)00107-3       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230706190150.htm              --- up 1 year, 18 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca