Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,722 of 8,931    |
|    ScienceDaily to All    |
|    Growing bio-inspired polymer brains for     |
|    05 Jul 23 22:30:22    |
      MSGID: 1:317/3 64a6437b       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Growing bio-inspired polymer brains for artificial neural networks                      Date:        July 5, 2023        Source:        Osaka University        Summary:        A new method for connecting neurons in neuromorphic wetware has been        developed. The wetware comprises conductive polymer wires grown in        a three-dimensional configuration, done by applying square-wave        voltage to electrodes submerged in a precursor solution. The        voltage can modify wire conductance, allowing the network to be        trained. This fabricated network is able to perform unsupervised        Hebbian learning and spike-based learning.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       A new method for connecting neurons in neuromorphic wetware has       been developed by researchers from Osaka University and Hokkaido       University. The wetware comprises conductive polymer wires grown in a       three-dimensional configuration, done by applying square-wave voltage to       electrodes submerged in a precursor solution. The voltage can modify wire       conductance, allowing the network to be trained. This fabricated network       is able to perform unsupervised Hebbian learning and spike-based learning.              The development of neural networks to create artificial intelligence in       computers was originally inspired by how biological systems work. These       'neuromorphic' networks, however, run on hardware that looks nothing       like a biological brain, which limits performance. Now, researchers from       Osaka University and Hokkaido University plan to change this by creating       neuromorphic 'wetware'.              While neural-network models have achieved remarkable success in       applications such as image generation and cancer diagnosis, they still       lag far behind the general processing abilities of the human brain. In       part, this is because they are implemented in software using traditional       computer hardware that is not optimized for the millions of parameters       and connections that these models typically require.              Neuromorphic wetware, based on memristive devices, could address this       problem.              A memristive device is a device whose resistance is set by its history       of applied voltage and current. In this approach, electropolymerization       is used to link electrodes immersed in a precursor solution using wires       made of conductive polymer. The resistance of each wire is then tuned       using small voltage pulses, resulting in a memristive device.              "The potential to create fast and energy-efficient networks has been shown       using 1D or 2D structures," says senior author Megumi Akai-Kasaya. "Our       aim was to extend this approach to the construction of a 3D network."       The researchers were able to grow polymer wires from a common polymer       mixture called 'PEDOT:PSS', which is highly conductive, transparent,       flexible, and stable. A 3D structure of top and bottom electrodes was       first immersed in a precursor solution. The PEDOT:PSS wires were then       grown between selected electrodes by applying a square-wave voltage       on these electrodes, mimicking the formation of synaptic connections       through axon guidance in an immature brain.              Once the wire was formed, the characteristics of the wire, especially       the conductance, were controlled using small voltage pulses applied       to one electrode, which changes the electrical properties of the film       surrounding the wires.              "The process is continuous and reversible," explains lead author Naruki       Hagiwara, "and this characteristic is what enables the network to be       trained, just like software-based neural networks." The fabricated       network was used to demonstrate unsupervised Hebbian learning (i.e.,       when synapses that often fire together strengthen their shared connection       over time). What's more, the researchers were able to precisely control       the conductance values of the wires so that the network could complete       its tasks. Spike-based learning, another approach to neural networks that       more closely mimics the processes of biological neural networks, was also       demonstrated by controlling the diameter and conductivity of the wires.              Next, by fabricating a chip with a larger number of electrodes and       using microfluidic channels to supply the precursor solution to each       electrode, the researchers hope to build a larger and more powerful       network. Overall, the approach determined in this study is a big step       toward the realization of neuromorphic wetware and closing the gap       between the cognitive abilities of humans and computers.               * RELATED_TOPICS        o Matter_&_Energy        # Electronics # Telecommunications # Fuel_Cells #        Spintronics        o Computers_&_Math        # Neural_Interfaces # Computers_and_Internet #        Computer_Programming # Spintronics_Research        * RELATED_TERMS        o Neural_network o Artificial_neural_network o Mobile_phone o        Transformer o Local_area_network o Voice_over_IP o Computer_worm        o Nanowire              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Why_Birds_Ancestors_Lived;_Other_Dinosaurs_Died *        Dissolving_Cardiac_Device_Treats_Heart_Disease *        Webb_Locates_Dust_Reservoirs_in_Two_Supernovae *        Earth_Formed_from_Dry,_Rocky_Building_Blocks *        Ancient_Volcanic_Activity_On_Moon's_Dark_Side *        Highly_Conductive_Metallic_Gel_for_3D_Printing *        Potent_Greenhouse_Gas_Could_Be_Abated_Today *        Polymer_Brains_for_Artificial_Neural_Networks *        Early_Apex_Predator_Sought_Soft_Over_...               * Time_in_Universe_Once_Flowed_Five_Times_Slower              Trending Topics this week       ==========================================================================       SPACE_&_TIME Black_Holes Astrophysics NASA MATTER_&_ENERGY Biochemistry       Optics Petroleum COMPUTERS_&_MATH Communications Educational_Technology       Computer_Modeling                     ==========================================================================              Strange & Offbeat       ==========================================================================       SPACE_&_TIME       Quasar_'Clocks'_Show_Universe_Was_Five_Times_Slower_Soon_After_the_Big_Bang       First_'Ghost_Particle'_Image_of_Milky_Way       Gullies_on_Mars_Could_Have_Been_Formed_by_Recent_Periods_of_Liquid_Meltwater,       Study_Suggests MATTER_&_ENERGY       Researchers_Create_Highly_Conductive_Metallic_Gel_for_3D_Printing       Growing_Bio-Inspired_Polymer_Brains_for_Artificial_Neural_Networks       Displays_Controlled_by_Flexible_Fins_and_Liquid_Droplets_More_Versatile,       Efficient_Than_LED_Screens COMPUTERS_&_MATH       AI_Tests_Into_Top_1%_for_Original_Creative_Thinking       Turning_Old_Maps_Into_3D_Digital_Models_of_Lost_Neighborhoods       NeuWS_Camera_Answers_'Holy_Grail_Problem'_in_Optical_Imaging Story Source:       Materials provided by Osaka_University. Note: Content may be edited for       style and length.                     ==========================================================================       Journal Reference:        1. Naruki Hagiwara, Tetsuya Asai, Kota Ando, Megumi Akai‐Kasaya.               Fabrication and Training of 3D Conductive Polymer Networks for        Neuromorphic Wetware. Advanced Functional Materials, 2023; DOI:        10.1002/ adfm.202300903       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230705105850.htm              --- up 1 year, 18 weeks, 2 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca