home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   EARTH      Uhh, that 3rd rock from the sun?      8,931 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 8,700 of 8,931   
   ScienceDaily to All   
   Cutting edge transistors for semiconduct   
   03 Jul 23 22:30:30   
   
   MSGID: 1:317/3 64a3a09f   
   PID: hpt/lnx 1.9.0-cur 2019-01-08   
   TID: hpt/lnx 1.9.0-cur 2019-01-08   
    Cutting edge transistors for semiconductors of the future    
      
     Date:   
         July 3, 2023   
     Source:   
         Lund University   
     Summary:   
         Transistors that can change properties are important elements   
         in the development of tomorrow's semiconductors. With standard   
         transistors approaching the limit for how small they can be,   
         having more functions on the same number of units becomes   
         increasingly important in enabling the development of small,   
         energy-efficient circuits for improved memory and more powerful   
         computers. Researchers have shown how to create new configurable   
         transistors and exert control on a new, more precise level.   
      
      
         Facebook Twitter Pinterest LinkedIN Email   
      
   ==========================================================================   
   FULL STORY   
   ==========================================================================   
   Transistors that can change properties are important elements in the   
   development of tomorrow's semiconductors. With standard transistors   
   approaching the limit for how small they can be, having more functions   
   on the same number of units becomes increasingly important in enabling   
   the development of small, energy-efficient circuits for improved memory   
   and more powerful computers.   
      
   Researchers at Lund University in Sweden have shown how to create new   
   configurable transistors and exert control on a new, more precise level.   
      
   In view of the constantly increasing need for better, more powerful   
   and efficient circuits, there is a great interest in reconfigurable   
   transistors.   
      
   The advantage of these is that, in contrast to standard semiconductors,   
   it is possible to change the transistor's properties after they have   
   been manufactured.   
      
   Historically, computers' computational power and efficiency have been   
   improved by scaling down the silicon transistor's size (also known   
   as Moore's Law). But now a stage has been reached where the costs for   
   continuing development along those lines have become much higher, and   
   quantum mechanics problems have arisen that have slowed development.   
      
   Instead, the search is on for new materials, components and circuits. Lund   
   University is among the world leaders in III-V materials, which are an   
   alternative to silicon. These are materials with considerable potential in   
   the development of high-frequency technology (such as parts for future 6G   
   and 7G networks), optical applications and increasingly energy-efficient   
   electronic components.   
      
   Ferroelectric materials are used in order to realise this potential. These   
   are special materials that can change their inner polarisation when   
   exposed to an electric field. It can be compared to an ordinary magnet,   
   but instead of a magnetic north and south pole, electric poles are   
   formed with a positive and a negative charge on each side of the   
   material. By changing the polarisation, it is possible to control the   
   transistor. Another advantage is that the material "remembers" its   
   polarisation, even if the current is turned off.   
      
   Through a new combination of materials, the researchers have created   
   ferroelectric "grains" that control a tunnel junction -- an electrical   
   bridging effect -- in the transistor. This is on an extremely small scale   
   -- a grain is 10 nanometres in size. By measuring fluctuations in the   
   voltage or current, it has been possible to identify when polarisation   
   changes in the individual grains and thus understand how this affects   
   the transistor's behaviour.   
      
   The newly published research has examined new ferroelectric memory in   
   the form of transistors with tunnel barriers in order to create new   
   circuit architectures.   
      
   "The aim is to create neuromorphic circuits, i.e. circuits that are   
   adapted for artificial intelligence in that their structure is similar   
   to the human brain with its synapses and neurons," says Anton Eriksson,   
   who recently completed his doctoral degree in nanoelectronics.   
      
   What is special about the new results is that it has been possible   
   to create tunnel junctions using ferroelectric grains that are located   
   directly adjacent to the junction. These nanograins can then be controlled   
   on an individual level, when previously it was only possible to keep   
   track of entire groups of grains, known as ensembles. In this way,   
   it is possible to identify and control separate parts of the material.   
      
   "In order to create advanced applications, you must first understand   
   the dynamics in individual grains down to the atomic level, as well as   
   the defects that exist. The increased understanding of the material can   
   be used to optimise the functions. By controlling these ferroelectric   
   grains, you can then create new semiconductors in which you can alter   
   properties. By changing the voltage, you can thus produce different   
   functions in one and the same component," says Lars-Erik Wernersson,   
   professor of nanoelectronics.   
      
   The researchers have also examined how this knowledge can be used to   
   create different reconfigurable applications by manipulating in various   
   ways the signal that goes through the transistor. It could, for example,   
   be used for new memory cells or more energy-efficient transistors.   
      
   This new type of transistor is called ferro-TFET and can be used in both   
   digital and analogue circuits.   
      
   "What's interesting is that it's possible to modulate the input signal   
   in various ways, for example by the transistor shifting phase, frequency   
   doubling, and signal mixing. As the transistor remembers its properties,   
   even when the current is turned off, there is no need to reset it every   
   time the circuit is used," says Zhongyunshen Zho, doctoral student in   
   nanoelectronics.   
      
   Another advantage of these transistors is that they can function at   
   low voltage. This makes them energy-efficient, which will be required,   
   for example, in tomorrow's wireless communication, Internet of Things   
   and quantum computers.   
      
   "I consider this to be leading-edge research of international   
   standing. It's good that in Lund and Sweden we are at the forefront   
   regarding semiconductors, especially in view of the EU's recently   
   enacted Chips Act, which aims to strengthen Europe's position regarding   
   semiconductors," says Lars-Erik Wernersson.   
      
       * RELATED_TOPICS   
             o Matter_&_Energy   
                   # Electronics # Spintronics # Technology #   
                   Materials_Science   
             o Computers_&_Math   
                   # Spintronics_Research # Computers_and_Internet #   
                   Neural_Interfaces # Computer_Science   
       * RELATED_TERMS   
             o Germanium o Quantum_computer o Circuit_design o MRAM o Physics   
             o Energy_development o Electron_configuration o Blue_Gene   
      
   ==========================================================================   
      
    Print   
      
    Email   
      
    Share   
   ==========================================================================   
   ****** 1 ****** ***** 2 ***** **** 3 ****   
   *** 4 *** ** 5 ** Breaking this hour   
   ==========================================================================   
       * Screens_More_Versatile_Than_LED:_Fins_and_...   
      
       * GM_Pig_Heart_in_a_Human_Patient:_Update *   
       Multiple_Sclerosis_Severity * Wind_Farm_Noise_and_Road_Traffic_Noise   
       * Mavericks_and_Horizontal_Gene_Transfer *   
       Early_Reading_for_Pleasure:_Brains,_...   
      
       * New_Light_Shed_On_Evolution_of_Animals *   
       Gullies_On_Mars_from_Liquid_Meltwater?   
       * DNA_Organization_in_Real-Time *   
       How_the_Cat_Nose_Knows_What_It's_Smelling   
      
   Trending Topics this week   
   ==========================================================================   
   SPACE_&_TIME Astrophysics Galaxies Black_Holes MATTER_&_ENERGY Technology   
   Nature_of_Water Organic_Chemistry COMPUTERS_&_MATH Information_Technology   
   Spintronics_Research Communications   
      
      
   ==========================================================================   
      
   Strange & Offbeat   
   ==========================================================================   
   SPACE_&_TIME First_'Ghost_Particle'_Image_of_Milky_Way   
   Gullies_on_Mars_Could_Have_Been_Formed_by_Recent_Periods_of_Liquid_Meltwater,   
   Study_Suggests Earliest_Strands_of_the_Cosmic_Web MATTER_&_ENERGY   
   Displays_Controlled_by_Flexible_Fins_and_Liquid_Droplets_More_Versatile,   
   Efficient_Than_LED_Screens   
   Turning_Old_Maps_Into_3D_Digital_Models_of_Lost_Neighborhoods   
   NeuWS_Camera_Answers_'Holy_Grail_Problem'_in_Optical_Imaging   
   COMPUTERS_&_MATH   
   'Electronic_Skin'_from_Bio-Friendly_Materials_Can_Track_Human_Vital_Signs_With   
   Ultrahigh_Precision   
   Researchers_Make_a_Quantum_Computing_Leap_With_a_Magnetic_Twist   
   Physicists_Discover_a_New_Switch_for_Superconductivity Story Source:   
   Materials provided by Lund_University. Note: Content may be edited for   
   style and length.   
      
      
   ==========================================================================   
   Journal References:   
      1. Zhongyunshen Zhu, Anton E. O. Persson, Lars-Erik Wernersson.   
      
         Reconfigurable signal modulation in a ferroelectric tunnel   
         field-effect transistor. Nature Communications, 2023; 14 (1) DOI:   
         10.1038/s41467-023- 38242-w   
      2. Zhongyunshen Zhu, Anton E. O. Persson, Lars-Erik Wernersson. Sensing   
         single domains and individual defects in scaled   
         ferroelectrics. Science Advances, 2023; 9 (5) DOI:   
         10.1126/sciadv.ade7098   
   ==========================================================================   
      
   Link to news story:   
   https://www.sciencedaily.com/releases/2023/07/230703133015.htm   
      
   --- up 1 year, 18 weeks, 10 hours, 50 minutes   
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)   
   SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114   
   SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854   
   SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35   
   PATH: 317/3 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca