Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,700 of 8,931    |
|    ScienceDaily to All    |
|    Cutting edge transistors for semiconduct    |
|    03 Jul 23 22:30:30    |
      MSGID: 1:317/3 64a3a09f       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Cutting edge transistors for semiconductors of the future                Date:        July 3, 2023        Source:        Lund University        Summary:        Transistors that can change properties are important elements        in the development of tomorrow's semiconductors. With standard        transistors approaching the limit for how small they can be,        having more functions on the same number of units becomes        increasingly important in enabling the development of small,        energy-efficient circuits for improved memory and more powerful        computers. Researchers have shown how to create new configurable        transistors and exert control on a new, more precise level.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Transistors that can change properties are important elements in the       development of tomorrow's semiconductors. With standard transistors       approaching the limit for how small they can be, having more functions       on the same number of units becomes increasingly important in enabling       the development of small, energy-efficient circuits for improved memory       and more powerful computers.              Researchers at Lund University in Sweden have shown how to create new       configurable transistors and exert control on a new, more precise level.              In view of the constantly increasing need for better, more powerful       and efficient circuits, there is a great interest in reconfigurable       transistors.              The advantage of these is that, in contrast to standard semiconductors,       it is possible to change the transistor's properties after they have       been manufactured.              Historically, computers' computational power and efficiency have been       improved by scaling down the silicon transistor's size (also known       as Moore's Law). But now a stage has been reached where the costs for       continuing development along those lines have become much higher, and       quantum mechanics problems have arisen that have slowed development.              Instead, the search is on for new materials, components and circuits. Lund       University is among the world leaders in III-V materials, which are an       alternative to silicon. These are materials with considerable potential in       the development of high-frequency technology (such as parts for future 6G       and 7G networks), optical applications and increasingly energy-efficient       electronic components.              Ferroelectric materials are used in order to realise this potential. These       are special materials that can change their inner polarisation when       exposed to an electric field. It can be compared to an ordinary magnet,       but instead of a magnetic north and south pole, electric poles are       formed with a positive and a negative charge on each side of the       material. By changing the polarisation, it is possible to control the       transistor. Another advantage is that the material "remembers" its       polarisation, even if the current is turned off.              Through a new combination of materials, the researchers have created       ferroelectric "grains" that control a tunnel junction -- an electrical       bridging effect -- in the transistor. This is on an extremely small scale       -- a grain is 10 nanometres in size. By measuring fluctuations in the       voltage or current, it has been possible to identify when polarisation       changes in the individual grains and thus understand how this affects       the transistor's behaviour.              The newly published research has examined new ferroelectric memory in       the form of transistors with tunnel barriers in order to create new       circuit architectures.              "The aim is to create neuromorphic circuits, i.e. circuits that are       adapted for artificial intelligence in that their structure is similar       to the human brain with its synapses and neurons," says Anton Eriksson,       who recently completed his doctoral degree in nanoelectronics.              What is special about the new results is that it has been possible       to create tunnel junctions using ferroelectric grains that are located       directly adjacent to the junction. These nanograins can then be controlled       on an individual level, when previously it was only possible to keep       track of entire groups of grains, known as ensembles. In this way,       it is possible to identify and control separate parts of the material.              "In order to create advanced applications, you must first understand       the dynamics in individual grains down to the atomic level, as well as       the defects that exist. The increased understanding of the material can       be used to optimise the functions. By controlling these ferroelectric       grains, you can then create new semiconductors in which you can alter       properties. By changing the voltage, you can thus produce different       functions in one and the same component," says Lars-Erik Wernersson,       professor of nanoelectronics.              The researchers have also examined how this knowledge can be used to       create different reconfigurable applications by manipulating in various       ways the signal that goes through the transistor. It could, for example,       be used for new memory cells or more energy-efficient transistors.              This new type of transistor is called ferro-TFET and can be used in both       digital and analogue circuits.              "What's interesting is that it's possible to modulate the input signal       in various ways, for example by the transistor shifting phase, frequency       doubling, and signal mixing. As the transistor remembers its properties,       even when the current is turned off, there is no need to reset it every       time the circuit is used," says Zhongyunshen Zho, doctoral student in       nanoelectronics.              Another advantage of these transistors is that they can function at       low voltage. This makes them energy-efficient, which will be required,       for example, in tomorrow's wireless communication, Internet of Things       and quantum computers.              "I consider this to be leading-edge research of international       standing. It's good that in Lund and Sweden we are at the forefront       regarding semiconductors, especially in view of the EU's recently       enacted Chips Act, which aims to strengthen Europe's position regarding       semiconductors," says Lars-Erik Wernersson.               * RELATED_TOPICS        o Matter_&_Energy        # Electronics # Spintronics # Technology #        Materials_Science        o Computers_&_Math        # Spintronics_Research # Computers_and_Internet #        Neural_Interfaces # Computer_Science        * RELATED_TERMS        o Germanium o Quantum_computer o Circuit_design o MRAM o Physics        o Energy_development o Electron_configuration o Blue_Gene              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Screens_More_Versatile_Than_LED:_Fins_and_...               * GM_Pig_Heart_in_a_Human_Patient:_Update *        Multiple_Sclerosis_Severity * Wind_Farm_Noise_and_Road_Traffic_Noise        * Mavericks_and_Horizontal_Gene_Transfer *        Early_Reading_for_Pleasure:_Brains,_...               * New_Light_Shed_On_Evolution_of_Animals *        Gullies_On_Mars_from_Liquid_Meltwater?        * DNA_Organization_in_Real-Time *        How_the_Cat_Nose_Knows_What_It's_Smelling              Trending Topics this week       ==========================================================================       SPACE_&_TIME Astrophysics Galaxies Black_Holes MATTER_&_ENERGY Technology       Nature_of_Water Organic_Chemistry COMPUTERS_&_MATH Information_Technology       Spintronics_Research Communications                     ==========================================================================              Strange & Offbeat       ==========================================================================       SPACE_&_TIME First_'Ghost_Particle'_Image_of_Milky_Way       Gullies_on_Mars_Could_Have_Been_Formed_by_Recent_Periods_of_Liquid_Meltwater,       Study_Suggests Earliest_Strands_of_the_Cosmic_Web MATTER_&_ENERGY       Displays_Controlled_by_Flexible_Fins_and_Liquid_Droplets_More_Versatile,       Efficient_Than_LED_Screens       Turning_Old_Maps_Into_3D_Digital_Models_of_Lost_Neighborhoods       NeuWS_Camera_Answers_'Holy_Grail_Problem'_in_Optical_Imaging       COMPUTERS_&_MATH       'Electronic_Skin'_from_Bio-Friendly_Materials_Can_Track_Human_Vital_Signs_With       Ultrahigh_Precision       Researchers_Make_a_Quantum_Computing_Leap_With_a_Magnetic_Twist       Physicists_Discover_a_New_Switch_for_Superconductivity Story Source:       Materials provided by Lund_University. Note: Content may be edited for       style and length.                     ==========================================================================       Journal References:        1. Zhongyunshen Zhu, Anton E. O. Persson, Lars-Erik Wernersson.               Reconfigurable signal modulation in a ferroelectric tunnel        field-effect transistor. Nature Communications, 2023; 14 (1) DOI:        10.1038/s41467-023- 38242-w        2. Zhongyunshen Zhu, Anton E. O. Persson, Lars-Erik Wernersson. Sensing        single domains and individual defects in scaled        ferroelectrics. Science Advances, 2023; 9 (5) DOI:        10.1126/sciadv.ade7098       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230703133015.htm              --- up 1 year, 18 weeks, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca