Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,693 of 8,931    |
|    ScienceDaily to All    |
|    Base editing shows potential superiority    |
|    03 Jul 23 22:30:28    |
      MSGID: 1:317/3 64a3a08a       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Base editing shows potential superiority for curing sickle cell disease                      Date:        July 3, 2023        Source:        St. Jude Children's Research Hospital        Summary:        Adenosine base editing restarted fetal hemoglobin expression in        cells from patients with sickle cell disease.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Gene therapy that alters hemoglobin genes may be an answer to curing       sickle cell disease (SCD) and beta thalassemia. These two common       life-threatening anemias afflict millions of individuals across the       globe. Scientists at St.              Jude Children's Research Hospital and the Broad Institute of MIT and       Harvard used a next-generation genome editing technology, adenosine base       editing, to restart fetal hemoglobin expression in SCD patient cells. The       approach raised the expression of fetal hemoglobin to higher, more stable,       and more uniform levels than other genome editing technologies that use       CRISPR/Cas9 nuclease in human hematopoietic stem cells. The findings       were published today in Nature Genetics.              SCD and beta thalassemia are blood disorders affecting millions of people;       mutations in the gene that encodes an adult version of the oxygen-carrying       molecule hemoglobin cause these disorders. Restoring gene expression       of an alternative hemoglobin subunit active in a developing fetus       has previously shown therapeutic benefit in SCD and beta thalassemia       patients. The researchers wanted to find and optimize genomic technology       to edit the fetal hemoglobin gene. One alteration installed by adenosine       base editing was particularly potent for restoring fetal hemoglobin       expression in post-natal red blood cells.              "We showed base editors meaningfully increase fetal hemoglobin       levels," said lead corresponding author Jonathan Yen, Ph.D., St. Jude       Therapeutic Genome Engineering group director. "Now, my Therapeutic       Genome Engineering team is already hard at work, starting to optimize       base editing to move this technology to the clinic." Hemoglobin holds       the key Adult hemoglobin, expressed primarily after birth, contains four       protein subunits -- two beta-globin and two alpha-globin. Mutations in       the beta-globin gene cause sickle cell disease and beta-thalassemia. But       humans have another hemoglobin subunit gene (gamma-globin), which is       expressed during fetal development instead of beta-globin. Gamma-globin       combines with alpha-globin to form fetal hemoglobin. Normally around       birth, gamma-globin expression is turned off, and beta-globin is turned       on, switching from fetal to adult hemoglobin.              Genome editing technologies can introduce mutations that turn the       gamma-globin gene back on, thereby increasing fetal hemoglobin       production, which can effectively substitute for defective adult       hemoglobin production.              "We used a based editor to create a new TAL1 transcription factor binding       site that causes particularly strong induction of fetal hemoglobin,"       Yen said.              "Creating a new transcription factor binding site requires a precise base       pair change -- something that can't be done using CRISPR-Cas9 without       generating unwanted byproducts and other potential consequences from       double-stranded breaks." "The gamma-globin [fetal hemoglobin] gene is a       good target for base editing because there are very precise mutations that       can reactivate its expression to induce expression after birth, which may       provide a powerful 'one-size-fits-all' treatment for all mutations that       cause SCD and beta-thalassemia," said co- corresponding author Mitchell       Weiss, M.D., Ph.D., St. Jude Department of Hematology chair.              Thus, scientists want to restore fetal hemoglobin expression because       it is a more universal treatment for major hemoglobin disorders than       correcting the SCD mutation or hundreds of mutations that cause beta       thalassemia. Increasing fetal hemoglobin expression has the potential       to therapeutically benefit most patients with SCD or beta thalassemia,       regardless of their causative mutations.              Researchers have previously shown proof-of-principle with multiple genome       editing approaches, but this study is the first to systematically compare       these different strategies' efficacy.              "We looked closely at the individual DNA sequence outcomes of nucleases       and base editors used to make therapeutic edits of fetal hemoglobin       genes. Since nucleases often generate complex, uncontrolled mixtures       of many different DNA sequence outcomes, we characterized how each       nuclease-edited sequence affects fetal hemoglobin expression. Then we did       the same for base editing outcomes, which were much more homogeneous,"said       co-corresponding author David Liu, Ph.D., Richard Merkin, Professor       at Broad Institute of MIT and Harvard, whose lab invented base editing       in 2016.              The study discovered that using base editing at the most potent site       in the gamma-globin promoter achieved 2- to 4-fold greater HbF levels       than Cas9 editing. They further demonstrated that these base edits could       be retained in engrafting blood stem cells from healthy donors and SCD       patients by putting them into immunocompromised mice.              Addressing safety concerns "Ultimately, we showed that not all genetic       approaches are equal," Yen said.              "Base editors may be able to create more potent and precise edits than       other technologies. But we must do more safety testing and optimization."       When compared for safety, base editing caused fewer genotoxic events,       such as p53 activation and large deletions. Base editing was much       more consistent in its edits and products -- a highly desirable safety       property for a clinical therapy. In contrast to conventional Cas9, which       generates uncontrolled mixtures of insertion and deletion mutations       termed "indels," base editing generates precise nucleotide changes with       few undesired byproducts.              "In our comparison, we found unanticipated problems with conventional       Cas9 nucleases," Weiss said. "We were somewhat surprised that not every       Cas9 insertion or deletion raised fetal hemoglobin to the same extent,       indicating the potential for heterogeneous biological outcomes with that       technology." The group found that individual red blood cells derived       from hematopoietic stem cells treated with the same Cas9 produce a       more variable amount of fetal hemoglobin compared to cells treated       with base editing. Thus, base editing produced more potent, reliable,       and consistent outcomes, which are desirable therapeutic properties.              Though base editing performed well, researchers have yet to determine       its safety in patients. Notably, base editing may have some risks       not presented by Cas9; for example, some early base editors can cause       undesired changes in genomic DNA or RNA at off-target sites. The group       showed that these changes are relatively small and not predicted to be       harmful, but deeper studies are warranted to evaluate these risks fully.              The future of gene editing therapeutics Throughout the study, the       scientists directly compared the performance of Cas9 nucleases at       two different target sites that induce fetal hemoglobin production in       different ways and base editing. Base editing uses a distinct editing       mechanism that directly converts one DNA base pair to another, rather       than cutting the DNA double helix into two pieces.              The Cas9 nuclease approaches create mixtures of deletions and insertions       that impair the expression or activity of BCL11A, a well-known       gamma-globin gene repressor. In contrast, base editing creates a novel       transcription factor binding motif within the gamma-globin promoter. The       Cas9 nuclease approaches and a different base editing approach are being       tested through clinical trials.              St. Jude is participating in some of these studies.              "It is very important to test and compare different genome editing       approaches for treating SCD and beta-thalassemia because the best ones       are not known," said Weiss.              John Tisdale, M.D., a study co-author and the Cellular and Molecular       Therapeutics Branch chief at the National Heart, Lung, and Blood       Institute, agreed. "The science of gene editing is moving quickly, and       we are now able to envision multiple different strategies for combating       sickle cell disease," Tisdale said. "These findings bring us a step       closer to our goal of broadly available cures."        * RELATED_TOPICS        o Health_&_Medicine        # Sickle_Cell_Anemia # Anemia # Birth_Defects #        Genes # Gene_Therapy # Human_Biology # Stem_Cells #        Personalized_Medicine        * RELATED_TERMS        o Sickle-cell_disease o Natural_killer_cell o Stem_cell        o Somatic_cell o Cell_(biology) o Embryonic_stem_cell o        Chemotherapy o Axon              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Screens_More_Versatile_Than_LED:_Fins_and_...               * GM_Pig_Heart_in_a_Human_Patient:_Update *        Multiple_Sclerosis_Severity * Wind_Farm_Noise_and_Road_Traffic_Noise        * Mavericks_and_Horizontal_Gene_Transfer *        Early_Reading_for_Pleasure:_Brains,_...               * New_Light_Shed_On_Evolution_of_Animals *        Gullies_On_Mars_from_Liquid_Meltwater?        * DNA_Organization_in_Real-Time *        How_the_Cat_Nose_Knows_What_It's_Smelling              Trending Topics this week       ==========================================================================       HEALTH_&_MEDICINE Personalized_Medicine Fitness Nervous_System       MIND_&_BRAIN K-12_Education Caregiving Intelligence LIVING_&_WELL Fitness       Staying_Healthy Nutrition                     ==========================================================================              Strange & Offbeat       ==========================================================================       HEALTH_&_MEDICINE       Grocery_Store_Carts_Set_to_Help_Diagnose_Common_Heart_Rhythm_Disorder_and       Prevent_Stroke DNA_Can_Fold_Into_Complex_Shapes_to_Execute_New_Functions       Everyone's_Brain_Has_a_Pain_Fingerprint_--_New_Research_Has_Revealed_for_the       First_Time MIND_&_BRAIN       Scientists_Discover_Spiral-Shaped_Signals_That_Organize_Brain_Activity       Illusions_Are_in_the_Eye,_Not_the_Mind       Long_Missions,_Frequent_Travel_Take_a_Toll_on_Astronauts'_Brains       LIVING_&_WELL Amputees_Feel_Warmth_in_Their_Missing_Hand       Why_Do_Champagne_Bubbles_Rise_the_Way_They_Do?_Scientists'_New_Discovery_Is       Worthy_of_a_Toast 'Gluing'_Soft_Materials_Without_Glue Story Source:       Materials provided by St._Jude_Children's_Research_Hospital. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Thiyagaraj Mayuranathan, Gregory A. Newby, Ruopeng Feng, Yu Yao,        Kalin D.               Mayberry, Cicera R. Lazzarotto, Yichao Li, Rachel M. Levine, Nikitha        Nimmagadda, Erin Dempsey, Guolian Kang, Shaina N. Porter, Phillip A.               Doerfler, Jingjing Zhang, Yoonjeong Jang, Jingjing Chen, Henry        W. Bell, Merlin Crossley, Senthil Velan Bhoopalan, Akshay Sharma,        John F. Tisdale, Shondra M. Pruett-Miller, Yong Cheng, Shengdar        Q. Tsai, David R. Liu, Mitchell J. Weiss, Jonathan S. Yen. Potent        and uniform fetal hemoglobin induction via base editing. Nature        Genetics, 2023; DOI: 10.1038/s41588- 023-01434-7       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230703133055.htm              --- up 1 year, 18 weeks, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca