Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,691 of 8,931    |
|    ScienceDaily to All    |
|    AI and CRISPR precisely control gene exp    |
|    03 Jul 23 22:30:28    |
      MSGID: 1:317/3 64a3a084       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        AI and CRISPR precisely control gene expression         RNA-based predictive models developed                Date:        July 3, 2023        Source:        Columbia University School of Engineering and Applied Science        Summary:        The study combines a deep learning model with CRISPR screens to        control the expression of human genes in different ways -- such as        flicking a light switch to shut them off completely or by using a        dimmer knob to partially turn down their activity. These precise        gene controls could be used to develop new CRISPR-based therapies.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Artificial intelligence can predict on- and off-target activity of CRISPR       tools that target RNA instead of DNA, according to new research published       in Nature Biotechnology.              The study by researchers at New York University, Columbia Engineering,       and the New York Genome Center, combines a deep learning model with CRISPR       screens to control the expression of human genes in different ways --       such as flicking a light switch to shut them off completely or by using       a dimmer knob to partially turn down their activity. These precise gene       controls could be used to develop new CRISPR-based therapies.              CRISPR is a gene editing technology with many uses in biomedicine and       beyond, from treating sickle cell anemia to engineering tastier mustard       greens. It often works by targeting DNA using an enzyme called Cas9. In       recent years, scientists discovered another type of CRISPR that instead       targets RNA using an enzyme called Cas13.              RNA-targeting CRISPRs can be used in a wide range of applications,       including RNA editing, knocking down RNA to block expression of a       particular gene, and high-throughput screening to determine promising drug       candidates. Researchers at NYU and the New York Genome Center created a       platform for RNA-targeting CRISPR screens using Cas13 to better understand       RNA regulation and to identify the function of non-coding RNAs. Because       RNA is the main genetic material in viruses including SARS-CoV-2 and flu,       RNA-targeting CRISPRs also hold promise for developing new methods to       prevent or treat viral infections. Also, in human cells, when a gene is       expressed, one of the first steps is the creation of RNA from the DNA       in the genome.              A key goal of the study is to maximize the activity of RNA-targeting       CRISPRs on the intended target RNA and minimize activity on other       RNAs which could have detrimental side effects for the cell. Off-target       activity includes both mismatches between the guide and target RNA as well       as insertion and deletion mutations. Earlier studies of RNA-targeting       CRISPRs focused only on on-target activity and mismatches; predicting       off-target activity, particularly insertion and deletion mutations, has       not been well-studied. In human populations, about one in five mutations       are insertions or deletions, so these are important types of potential       off-targets to consider for CRISPR design.              "Similar to DNA-targeting CRISPRs such as Cas9, we anticipate that RNA-       targeting CRISPRs such as Cas13 will have an outsized impact in molecular       biology and biomedical applications in the coming years," said Neville       Sanjana, associate professor of biology at NYU, associate professor of       neuroscience and physiology at NYU Grossman School of Medicine, a core       faculty member at New York Genome Center, and the study's co-senior       author. "Accurate guide prediction and off-target identification will       be of immense value for this newly developing field and therapeutics."       In their study inNature Biotechnology, Sanjana and his colleagues       performed a series of pooled RNA-targeting CRISPR screens in human       cells. They measured the activity of 200,000 guide RNAs targeting       essential genes in human cells, including both "perfect match" guide       RNAs and off-target mismatches, insertions, and deletions.              Sanjana's lab teamed up with the lab of machine learning expert David       Knowles to engineer a deep learning model they named TIGER (Targeted       Inhibition of Gene Expression via guide RNA design) that was trained on       the data from the CRISPR screens. Comparing the predictions generated       by the deep learning model and laboratory tests in human cells,       TIGER was able to predict both on-target and off-target activity,       outperforming previous models developed for Cas13 on- target guide       design and providing the first tool for predicting off-target activity       of RNA-targeting CRISPRs.              "Machine learning and deep learning are showing their strength in       genomics because they can take advantage of the huge datasets that can       now be generated by modern high-throughput experiments. Importantly, we       were also able to use "interpretable machine learning" to understand why       the model predicts that a specific guide will work well," said Knowles,       assistant professor of computer science and systems biology at Columbia       Engineering, a core faculty member at New York Genome Center, and the       study's co-senior author.              "Our earlier research demonstrated how to design Cas13 guides that can       knock down a particular RNA. With TIGER, we can now design Cas13 guides       that strike a balance between on-target knockdown and avoiding off-target       activity," said Hans-Hermann (Harm) Wessels, the study's co-first author       and a senior scientist at the New York Genome Center, who was previously       a postdoctoral fellow in Sanjana's laboratory.              The researchers also demonstrated that TIGER's off-target predictions       can be used to precisely modulate gene dosage -- the amount of a       particular gene that is expressed -- by enabling partial inhibition       of gene expression in cells with mismatch guides. This may be useful       for diseases in which there are too many copies of a gene, such as Down       syndrome, certain forms of schizophrenia, Charcot-Marie-Tooth disease (a       hereditary nerve disorder), or in cancers where aberrant gene expression       can lead to uncontrolled tumor growth.              "Our deep learning model can tell us not only how to design a guide       RNA that knocks down a transcript completely, but can also 'tune' it --       for instance, having it produce only 70% of the transcript of a specific       gene," said Andrew Stirn, a PhD student at Columbia Engineering and the       New York Genome Center, and the study's co-first author.              By combining artificial intelligence with an RNA-targeting CRISPR screen,       the researchers envision that TIGER's predictions will help avoid       undesired off- target CRISPR activity and further spur development of       a new generation of RNA- targeting therapies.              "As we collect larger datasets from CRISPR screens, the opportunities       to apply sophisticated machine learning models are growing rapidly. We       are lucky to have David's lab next door to ours to facilitate this       wonderful, cross-disciplinary collaboration. And, with TIGER, we can       predict off-targets and precisely modulate gene dosage which enables many       exciting new applications for RNA- targeting CRISPRs for biomedicine,"       said Sanjana.              Additional study authors include Alejandro Me'ndez-Mancilla and Sydney       K. Hart of NYU and the New York Genome Center, and Eric J. Kim of       Columbia University.              The research was supported by grants from the National Institutes of       Health (DP2HG010099, R01CA218668, R01GM138635), DARPA (D18AP00053),       the Cancer Research Institute, and the Simons Foundation for Autism       Research Initiative.               * RELATED_TOPICS        o Health_&_Medicine        # Human_Biology # Genes # Personalized_Medicine        o Plants_&_Animals        # CRISPR_Gene_Editing # Genetics # Biology        o Matter_&_Energy        # Organic_Chemistry # Biochemistry # Engineering        o Computers_&_Math        # Computer_Modeling # Neural_Interfaces #        Computational_Biology        * RELATED_TERMS        o Gene o Computational_genomics o BRCA2 o BRCA1 o Gene_therapy        o Bioluminescence o Soil_pH o DNA_microarray              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Screens_More_Versatile_Than_LED:_Fins_and_...               * GM_Pig_Heart_in_a_Human_Patient:_Update *        Multiple_Sclerosis_Severity * Wind_Farm_Noise_and_Road_Traffic_Noise        * Mavericks_and_Horizontal_Gene_Transfer *        Early_Reading_for_Pleasure:_Brains,_...               * New_Light_Shed_On_Evolution_of_Animals *        Gullies_On_Mars_from_Liquid_Meltwater?        * DNA_Organization_in_Real-Time *        How_the_Cat_Nose_Knows_What_It's_Smelling              Trending Topics this week       ==========================================================================       PLANTS_&_ANIMALS Birds Animal_Learning_and_Intelligence Molecular_Biology       EARTH_&_CLIMATE Water Weather Climate FOSSILS_&_RUINS Dinosaurs       Early_Mammals Origin_of_Life                     ==========================================================================              Strange & Offbeat       ==========================================================================       PLANTS_&_ANIMALS       Squash_Bugs_Are_Attracted_to_and_Eat_Each_Other's_Poop_to_Stock_Their       Microbiome How_Urea_May_Have_Been_the_Gateway_to_Life       Octopus_Sleep_Is_Surprisingly_Similar_to_Humans_and_Contains_a_Wake-Like_Stage       EARTH_&_CLIMATE       Turning_Old_Maps_Into_3D_Digital_Models_of_Lost_Neighborhoods       Orangutans_Can_Make_Two_Sounds_at_the_Same_Time,_Similar_to_Human_Beatboxing,       Study_Finds Do_Hummingbirds_Drink_Alcohol?_More_Often_Than_You_Think       FOSSILS_&_RUINS Newly_Discovered_Jurassic_Fossils_in_Texas       Megalodon_Was_No_Cold-Blooded_Killer       'We're_All_Asgardians':_New_Clues_About_the_Origin_of_Complex_Life       Story Source: Materials provided by       Columbia_University_School_of_Engineering_and_Applied Science. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Hans-Hermann Wessels, Andrew Stirn, Alejandro Me'ndez-Mancilla,        Eric J.               Kim, Sydney K. Hart, David A. Knowles, Neville        E. Sanjana. Prediction of on-target and off-target activity of        CRISPR-Cas13d guide RNAs using deep learning. Nature Biotechnology,        2023; DOI: 10.1038/s41587-023-01830-8       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230703133058.htm              --- up 1 year, 18 weeks, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca