Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,690 of 8,931    |
|    ScienceDaily to All    |
|    Limiting loss in leaky fibers    |
|    03 Jul 23 22:30:28    |
      MSGID: 1:317/3 64a3a081       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Limiting loss in leaky fibers         A theoretical understanding of what makes some hollow-core optical fibers       more efficient than others will inspire the design of new low-loss fibers                Date:        July 3, 2023        Source:        University of Bath        Summary:        Scientists have developed a mathematical model to explain how        antiresonant hollow-core fibers guide light in a way that keeps data        loss ultra-low. Until now, scientists had no complete explanation        for this well-observed phenomenon.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       A theoretical understanding of the relationship between the geometrical       structure of hollow-core optical fibres and their leakage loss will       inspire the design of novel low-loss fibres.              Immense progress has been made in recent years to increase the efficiency       of optical fibres through the design of cables that allow data to       be transmitted both faster and at broader bandwidths. The greatest       improvements have been made in the area of hollow-core fibres -- a       type of fibre that is notoriously 'leaky' yet also essential for many       applications.              Now, for the first time, scientists have figured out why some air-filled       fibre designs work so much more efficiently than others.              The puzzle has been solved by recent PhD graduate Dr Leah Murphy and       Emeritus Professor David Bird from the Centre for Photonics and Photonic       Materials at the University of Bath.              The researchers' theoretical and computational analysis gives a clear       explanation for a phenomenon that other physicists have observed in       practice: that a hollow-centred optical fibre incorporating glass       filaments into its design causes ultra-low loss of light as it travels       from source to destination.              Dr Murphy said: "The work is exciting because it adds a new perspective       to a 20-year-long conversation about how antiresonant, hollow-core fibres       guide light. I'm really optimistic that this will encourage researchers to       try out interesting new hollow-core fibre designs where light loss is kept       ultra-low." The communication revolution Optical fibres have transformed       communications in recent years, playing a vital role in enabling the       enormous growth of fast data transmission. Specially designed fibres have       also become key in the fields of imaging, lasers and sensing (as seen, for       instance, in pressure and temperature sensors used in harsh environments).              The best fibres have some astounding properties -- for example, a pulse       of light can travel over 50km along a standard silica glass fibre and       still retain more than 10% of its original intensity (an equivalent       would be the ability to see through 50km of water).              But the fact that light is guided through a solid material means current       fibres have some drawbacks. Silica glass becomes opaque when the light it       is attempting to transmit falls within the mid-infrared and ultraviolet       ends of the electromagnetic spectrum. This means applications that need       light at these wavelengths (such as spectrometry and instruments used       by astrophysicists) cannot use standard fibres.              In addition, high-intensity light pulses are distorted in standard fibres       and they can even destroy the fibre itself.              Researchers have been working hard to find solutions to these drawbacks,       putting their efforts into developing optical fibres that guide light       through air rather than glass.              This, however, brings its own set of problems: a fundamental property       of light is that it doesn't like to be confined in a low-density region       like air.              Optical fibres that use air rather than glass are intrinsically leaky       (the way a hosepipe would be if water could seep through the sides).              The confinement loss (or leakage loss) is a measure of how much light       intensity is lost as it moves through the fibres, and a key research goal       is to improve the design of the fibre's structure to minimise this loss.              Hollow cores The most promising designs involve a central hollow core       surrounded and confined by a specially designed cladding. Slotted within       the cladding are hollow, ultra-thin-walled glass capillaries attached       to an outer glass jacket.              Using this set-up, the loss performance of the hollow-core fibre is       close to that of a conventional fibre.              An intriguing feature of these hollow-core fibres is that a theoretical       understanding of how and why they guide light so well has not kept up       with experimental progress.              For around two decades, scientists have had a good physical understanding       of how the thin glass capillary walls that face the hollow core (green       in the diagram) act to reflect light back into the core and thus prevent       leakage. But a theoretical model that includes only this mechanism greatly       overestimates the confinement loss, and the question of why real fibres       guide light far more effectively than the simple theoretical model would       predict has, until now, remained unanswered.              Dr Murphy and Professor Bird describe their model in a paper published       this week in the leading journal Optica.              The theoretical and computational analysis focuses on the role played       by sections of the glass capillary walls (red in the diagram) that face       neither the inner core nor the outer wall of the fibre structure.              As well as supporting the core-facing elements of the cladding, the Bath       researchers show that these elements play a crucial role in guiding       light, by imposing a structure on the wave fields of the propagating       light (grey curved lines in the diagram). The authors have named the       effect of these structures 'azimuthal confinement'.              Although the basic idea of how azimuthal confinement works is simple, the       concept is shown to be remarkably powerful in explaining the relationship       between the geometry of the cladding structure and the confinement loss       of the fibre.              Dr Murphy, first author of the paper, said: "We expect the concept       of azimuthal confinement to be important to other researchers who are       studying the effect of light leakage from hollow-core fibres, as well       as those who are involved in developing and fabricating new designs."       Professor Bird, who led the project, added: "This was a really rewarding       project that needed the time and space to think about things in a       different way and then work through all the details.              "We started working on the problem in the first lockdown and it has now       been keeping me busy through the first year of my retirement. The paper       provides a new way for researchers to think about leakage of light in       hollow-core fibres, and I'm confident it will lead to new designs being       tried out." Dr Murphy was funded by the UK Engineering and Physical       Sciences Research Council.               * RELATED_TOPICS        o Matter_&_Energy        # Optics # Graphene # Construction # Biochemistry        o Computers_&_Math        # Computer_Modeling # Computational_Biology #        Mathematical_Modeling # Spintronics_Research        * RELATED_TERMS        o Mathematical_model o Earth_science o Statistics o        Introduction_to_quantum_mechanics o 3D_computer_graphics        o Computer_simulation o Electroluminescence o        Scientific_visualization              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Screens_More_Versatile_Than_LED:_Fins_and_...               * GM_Pig_Heart_in_a_Human_Patient:_Update *        Multiple_Sclerosis_Severity * Wind_Farm_Noise_and_Road_Traffic_Noise        * Mavericks_and_Horizontal_Gene_Transfer *        Early_Reading_for_Pleasure:_Brains,_...               * New_Light_Shed_On_Evolution_of_Animals *        Gullies_On_Mars_from_Liquid_Meltwater?        * DNA_Organization_in_Real-Time *        How_the_Cat_Nose_Knows_What_It's_Smelling              Trending Topics this week       ==========================================================================       SPACE_&_TIME Astrophysics Galaxies Black_Holes MATTER_&_ENERGY Technology       Nature_of_Water Organic_Chemistry COMPUTERS_&_MATH Information_Technology       Spintronics_Research Communications                     ==========================================================================              Strange & Offbeat       ==========================================================================       SPACE_&_TIME First_'Ghost_Particle'_Image_of_Milky_Way       Gullies_on_Mars_Could_Have_Been_Formed_by_Recent_Periods_of_Liquid_Meltwater,       Study_Suggests Earliest_Strands_of_the_Cosmic_Web MATTER_&_ENERGY       Displays_Controlled_by_Flexible_Fins_and_Liquid_Droplets_More_Versatile,       Efficient_Than_LED_Screens       Turning_Old_Maps_Into_3D_Digital_Models_of_Lost_Neighborhoods       NeuWS_Camera_Answers_'Holy_Grail_Problem'_in_Optical_Imaging       COMPUTERS_&_MATH       'Electronic_Skin'_from_Bio-Friendly_Materials_Can_Track_Human_Vital_Signs_With       Ultrahigh_Precision       Researchers_Make_a_Quantum_Computing_Leap_With_a_Magnetic_Twist       Physicists_Discover_a_New_Switch_for_Superconductivity Story Source:       Materials provided by University_of_Bath. Note: Content may be edited       for style and length.                     ==========================================================================       Journal Reference:        1. Leah R. Murphy, David Bird. Azimuthal confinement: the missing        ingredient        in understanding confinement loss in antiresonant, hollow-core        fibers.               Optica, 2023; 10 (7): 854 DOI: 10.1364/OPTICA.492058       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230703133108.htm              --- up 1 year, 18 weeks, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca