Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,685 of 8,931    |
|    ScienceDaily to All    |
|    Chemists discover why photosynthetic lig    |
|    03 Jul 23 22:30:28    |
      MSGID: 1:317/3 64a3a072       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Chemists discover why photosynthetic light-harvesting is so efficient        The disorganized arrangement of the proteins in light-harvesting       complexes is the key to their extreme efficiency                Date:        July 3, 2023        Source:        Massachusetts Institute of Technology        Summary:        Chemists have measured the energy transfer between photosynthetic        light- harvesting proteins. They discovered that the disorganized        arrangement of light-harvesting proteins boosts the efficiency of        the energy transduction.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       When photosynthetic cells absorb light from the sun, packets of energy       called photons leap between a series of light-harvesting proteins until       they reach the photosynthetic reaction center. There, cells convert       the energy into electrons, which eventually power the production of       sugar molecules.              This transfer of energy through the light-harvesting complex occurs with       extremely high efficiency: Nearly every photon of light absorbed generates       an electron, a phenomenon known as near-unity quantum efficiency.              A new study from MIT chemists offers a potential explanation for how       proteins of the light-harvesting complex, also called the antenna,       achieve that high efficiency. For the first time, the researchers were       able to measure the energy transfer between light-harvesting proteins,       allowing them to discover that the disorganized arrangement of these       proteins boosts the efficiency of the energy transduction.              "In order for that antenna to work, you need long-distance energy       transduction.              Our key finding is that the disordered organization of the       light-harvesting proteins enhances the efficiency of that long-distance       energy transduction," says Gabriela Schlau-Cohen, an associate professor       of chemistry at MIT and the senior author of the new study.              MIT postdocs Dihao Wang and Dvir Harris and former MIT graduate student       Olivia Fiebig PhD '22 are the lead authors of the paper, which will       appear in the Proceedings of the National Academy of Sciences. Jianshu       Cao, an MIT professor of chemistry, is also an author of the paper.              Energy capture For this study, the MIT team focused on purple bacteria,       which are often found in oxygen-poor aquatic environments and are commonly       used as a model for studies of photosynthetic light-harvesting.              Within these cells, captured photons travel through light-harvesting       complexes consisting of proteins and light-absorbing pigments such       as chlorophyll. Using ultrafast spectroscopy, a technique that uses       extremely short laser pulses to study events that happen on timescales       of femtoseconds to nanoseconds, scientists have been able to study how       energy moves within a single one of these proteins. However, studying how       energy travels between these proteins has proven much more challenging       because it requires positioning multiple proteins in a controlled way.              To create an experimental setup where they could measure how energy       travels between two proteins, the MIT team designed synthetic nanoscale       membranes with a composition similar to those of naturally occurring       cell membranes. By controlling the size of these membranes, known as       nanodiscs, they were able to control the distance between two proteins       embedded within the discs.              For this study, the researchers embedded two versions of the primary       light- harvesting protein found in purple bacteria, known as LH2 and LH3,       into their nanodiscs. LH2 is the protein that is present during normal       light conditions, and LH3 is a variant that is usually expressed only       during low light conditions.              Using the cryo-electron microscope at the MIT.nano facility, the       researchers could image their membrane-embedded proteins and show that       they were positioned at distances similar to those seen in the native       membrane. They were also able to measure the distances between the       light-harvesting proteins, which were on the scale of 2.5 to 3 nanometers.              Disordered is better Because LH2 and LH3 absorb slightly different       wavelengths of light, it is possible to use ultrafast spectroscopy to       observe the energy transfer between them. For proteins spaced closely       together, the researchers found that it takes about 6 picoseconds for       a photon of energy to travel between them. For proteins farther apart,       the transfer takes up to 15 picoseconds.              Faster travel translates to more efficient energy transfer, because the       longer the journey takes, the more energy is lost during the transfer.              "When a photon gets absorbed, you only have so long before that energy       gets lost through unwanted processes such as nonradiative decay,       so the faster it can get converted, the more efficient it will be,"       Schlau-Cohen says.              The researchers also found that proteins arranged in a lattice structure       showed less efficient energy transfer than proteins that were arranged       in randomly organized structures, as they usually are in living cells.              "Ordered organization is actually less efficient than the disordered       organization of biology, which we think is really interesting because       biology tends to be disordered. This finding tells us that that may       not just be an inevitable downside of biology, but organisms may have       evolved to take advantage of it," Schlau-Cohen says.              Now that they have established the ability to measure inter-protein       energy transfer, the researchers plan to explore energy transfer between       other proteins, such as the transfer between proteins of the antenna to       proteins of the reaction center. They also plan to study energy transfer       between antenna proteins found in organisms other than purple bacteria,       such as green plants.              The research was funded primarily by the U.S. Department of Energy.               * RELATED_TOPICS        o Plants_&_Animals        # Cell_Biology # Molecular_Biology # Biology #        Extreme_Survival        o Matter_&_Energy        # Optics # Energy_Technology # Solar_Energy # Biochemistry        * RELATED_TERMS        o Chlorophyll o Photosynthesis o Renewable_energy o        Bioluminescence o Food_chain o Electroluminescence o Lighting        o Calorie              ==========================================================================               Print               Email               Share       ==========================================================================       ****** 1 ****** ***** 2 ***** **** 3 ****       *** 4 *** ** 5 ** Breaking this hour       ==========================================================================        * Screens_More_Versatile_Than_LED:_Fins_and_...               * GM_Pig_Heart_in_a_Human_Patient:_Update *        Multiple_Sclerosis_Severity * Wind_Farm_Noise_and_Road_Traffic_Noise        * Mavericks_and_Horizontal_Gene_Transfer *        Early_Reading_for_Pleasure:_Brains,_...               * New_Light_Shed_On_Evolution_of_Animals *        Gullies_On_Mars_from_Liquid_Meltwater?        * DNA_Organization_in_Real-Time *        How_the_Cat_Nose_Knows_What_It's_Smelling              Trending Topics this week       ==========================================================================       SPACE_&_TIME Astrophysics Galaxies Black_Holes MATTER_&_ENERGY Technology       Nature_of_Water Organic_Chemistry COMPUTERS_&_MATH Information_Technology       Spintronics_Research Communications                     ==========================================================================              Strange & Offbeat       ==========================================================================       SPACE_&_TIME First_'Ghost_Particle'_Image_of_Milky_Way       Gullies_on_Mars_Could_Have_Been_Formed_by_Recent_Periods_of_Liquid_Meltwater,       Study_Suggests Earliest_Strands_of_the_Cosmic_Web MATTER_&_ENERGY       Displays_Controlled_by_Flexible_Fins_and_Liquid_Droplets_More_Versatile,       Efficient_Than_LED_Screens       Turning_Old_Maps_Into_3D_Digital_Models_of_Lost_Neighborhoods       NeuWS_Camera_Answers_'Holy_Grail_Problem'_in_Optical_Imaging       COMPUTERS_&_MATH       'Electronic_Skin'_from_Bio-Friendly_Materials_Can_Track_Human_Vital_Signs_With       Ultrahigh_Precision       Researchers_Make_a_Quantum_Computing_Leap_With_a_Magnetic_Twist       Physicists_Discover_a_New_Switch_for_Superconductivity Story Source:       Materials provided by Massachusetts_Institute_of_Technology. Original       written by Anne Trafton. Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Dihao Wang, Olivia C. Fiebig, Dvir Harris, Hila Toporik, Yi Ji,        Chern        Chuang, Muath Nairat, Ashley L. Tong, John I. Ogren, Stephanie        M. Hart, Jianshu Cao, James N. Sturgis, Yuval Mazor, Gabriela        S. Schlau-Cohen.               Elucidating interprotein energy transfer dynamics within the antenna        network from purple bacteria. Proceedings of the National Academy        of Sciences, 2023; 120 (28) DOI: 10.1073/pnas.2220477120       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/07/230703160002.htm              --- up 1 year, 18 weeks, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca