Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,657 of 8,931    |
|    ScienceDaily to All    |
|    Transferring data with many colors of li    |
|    29 Jun 23 22:30:26    |
      MSGID: 1:317/3 649e5a8a       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Transferring data with many colors of light simultaneously         The new photonic chip enables exponentially faster and more energy-       efficient artificial intelligence                Date:        June 29, 2023        Source:        Columbia University School of Engineering and Applied Science        Summary:        Scientists have developed a fast and extremely efficient method        for transferring huge amounts of data. The technique uses dozens        of frequencies of light to transfer several streams of information        over a fiber optic cable simultaneously.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       The data centers and high-performance computers that run artificial       intelligence programs, such as large language models, aren't limited by       the sheer computational power of their individual nodes. It's another       problem - - the amount of data they can transfer among the nodes --       that underlies the "bandwidth bottleneck" that currently limits the       performance and scaling of these systems.              The nodes in these systems can be separated by more than one       kilometer. Since metal wires dissipate electrical signals as heat when       transferring data at high speeds, these systems transfer data via       fiber-optic cables. Unfortunately, a lot of energy is wasted in the       process of converting electrical data into optical data (and back again)       as signals are sent from one node to another.              In a study published today in Nature Photonics, researchers at Columbia       Engineering demonstrate an energy-efficient method for transferring       larger quantities of data over the fiber-optic cables that connect the       nodes. This new technology improves on previous attempts to transmit       multiple signals simultaneously over the same fiber-optic cables. Instead       of using a different laser to generate each wavelength of light, the       new chips require only a single laser to generate hundreds of distinct       wavelengths of light that can simultaneously transfer independent streams       of data.              A simpler, more energy-efficient method for data transfer The       millimeter-scale system employs a technique called wavelength-division       multiplexing (WDM) and devices called Kerr frequency combs that take a       single color of light at the input and create many new colors of light       at the output.              The critical Kerr frequency combs developed by Michal Lipson, Higgins       Professor of Electrical Engineering and Professor of Applied Physics,       and Alexander Gaeta, David M. Rickey Professor of Applied Physics and       Materials Science and Professor of Electrical Engineering, allowed the       researchers to send clear signals through separate and precise wavelengths       of light, with space in between them.              "We recognized that these devices make ideal sources for optical       communications, where one can encode independent information channels on       each color of light and propagate them over a single optical fiber," says       senior author Keren Bergman, Charles Batchelor Professor of Electrical       Engineering at Columbia Engineering, where she also serves as the faculty       director of the Columbia Nano Initiative. This breakthrough could allow       systems to transfer exponentially more data without using proportionately       more energy.              The team miniaturized all of the optical components onto chips roughly       a few millimeters on each edge for generating light, encoded them with       electrical data, and then converted the optical data back into an       electrical signal at the target node. They devised a novel photonic       circuit architecture that allows each channel to be individually       encoded with data while having minimal interference with neighboring       channels. That means the signals sent in each color of light don't       become muddled and difficult for the receiver to interpret and convert       back into electronic data.              "In this way, our approach is much more compact and energy-efficient       than comparable approaches," says the study's lead author Anthony Rizzo,       who conducted this work while a PhD student in the Bergman lab and       is now a research scientist at the U.S. Air Force Research Laboratory       Information Directorate. "It is also cheaper and easier to scale since       the silicon nitride comb generation chips can be fabricated in standard       CMOS foundries used to fabricate microelectronics chips rather than       in expensive dedicated III- V foundries." The compact nature of these       chips enables them to directly interface with computer electronics chips,       greatly reducing the total energy consumption since the electrical data       signals only have to propagate over millimeters of distance rather than       tens of centimeters.              Bergman noted, "What this work shows is a viable path towards both       dramatically reducing the system energy consumption while simultaneously       increasing the computing power by orders of magnitude, allowing artificial       intelligence applications to continue to grow at an exponential rate       with minimal environmental impact." Exciting results pave the way to       real-world deployment In experiments, the researchers managed to transmit       16 gigabits per second per wavelength for 32 distinct wavelengths of       light for a total single-fiber bandwidth of 512 Gb/s with less than       one bit in error out of one trillion transmitted bits of data. These       are incredibly high levels of speed and efficiency. The silicon chip       transmitting the data measured just 4 mm x 1 mm, while the chip that       received the optical signal and converted it into an electrical signal       measured just 3 mm x 1 mm -- both smaller than a human fingernail.              "While we used 32 wavelength channels in the proof-of-principle       demonstration, our architecture can be scaled to accommodate over 100       channels, which is well within the reach of standard Kerr comb designs,"       Rizzo adds.              These chips can be fabricated using the same facilities used to make       the microelectronics chips found in a standard consumer laptop or       cellphone, providing a straightforward path to volume scaling and       real-world deployment.              The next step in this research is to integrate the photonics with       chip-scale driving and control electronics to further miniaturize       the system.               * RELATED_TOPICS        o Matter_&_Energy        # Optics # Energy_Technology # Microarrays #        Telecommunications # Physics # Energy_and_Resources #        Engineering # Consumer_Electronics        * RELATED_TERMS        o Scientific_method o Earth_science o Radiocarbon_dating o        Concorde o Copper o Natural_gas o Methane o Combustion              ==========================================================================       Story Source: Materials provided by       Columbia_University_School_of_Engineering_and_Applied Science. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Anthony Rizzo, Asher Novick, Vignesh Gopal, Bok Young Kim,        Xingchen Ji,        Stuart Daudlin, Yoshitomo Okawachi, Qixiang Cheng, Michal Lipson,        Alexander L. Gaeta, Keren Bergman. Massively scalable Kerr        comb-driven silicon photonic link. Nature Photonics, 2023; DOI:        10.1038/s41566-023- 01244-7       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/06/230629125713.htm              --- up 1 year, 17 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca