Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,650 of 8,931    |
|    ScienceDaily to All    |
|    Earliest strands of the cosmic web    |
|    29 Jun 23 22:30:24    |
      MSGID: 1:317/3 649e5a75       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Earliest strands of the cosmic web                Date:        June 29, 2023        Source:        NASA/Goddard Space Flight Center        Summary:        Galaxies are not scattered randomly across the universe. They        gather together not only into clusters, but into vast interconnected        filamentary structures with gigantic barren voids in between. This        'cosmic web' started out tenuous and became more distinct over        time as gravity drew matter together.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Galaxies are not scattered randomly across the universe. They gather       together not only into clusters, but into vast interconnected filamentary       structures with gigantic barren voids in between. This "cosmic web"       started out tenuous and became more distinct over time as gravity drew       matter together.              Astronomers using NASA's James Webb Space Telescope have discovered a       thread- like arrangement of 10 galaxies that existed just 830 million       years after the big bang. The 3 million light-year-long structure is       anchored by a luminous quasar -- a galaxy with an active, supermassive       black hole at its core. The team believes the filament will eventually       evolve into a massive cluster of galaxies, much like the well-known Coma       Cluster in the nearby universe.              "I was surprised by how long and how narrow this filament is," said team       member Xiaohui Fan of the University of Arizona in Tucson. "I expected       to find something, but I didn't expect such a long, distinctly thin       structure." "This is one of the earliest filamentary structures that       people have ever found associated with a distant quasar," added Feige       Wang of the University of Arizona in Tucson, the principal investigator       of this program.              This discovery is from the ASPIRE project (A SPectroscopic survey of       biased halos In the Reionization Era), whose main goal is to study the       cosmic environments of the earliest black holes. In total, the program       will observe 25 quasars that existed within the first billion years       after the big bang, a time known as the Epoch of Reionization.              "The last two decades of cosmology research have given us a robust       understanding of how the cosmic web forms and evolves. ASPIRE aims       to understand how to incorporate the emergence of the earliest massive       black holes into our current story of the formation of cosmic structure,"       explained team member Joseph Hennawi of the University of California,       Santa Barbara.              Growing Monsters Another part of the study investigates the properties       of eight quasars in the young universe. The team confirmed that their       central black holes, which existed less than a billion years after the       big bang, range in mass from 600 million to 2 billion times the mass       of our Sun. Astronomers continue seeking evidence to explain how these       black holes could grow so large so fast.              "To form these supermassive black holes in such a short time, two criteria       must be satisfied. First, you need to start growing from a massive 'seed'       black hole. Second, even if this seed starts with a mass equivalent to       a thousand Suns, it still needs to accrete a million times more matter       at the maximum possible rate for its entire lifetime," explained Wang.              "These unprecedented observations are providing important clues about       how black holes are assembled. We have learned that these black holes       are situated in massive young galaxies that provide the reservoir of       fuel for their growth," said Jinyi Yang of the University of Arizona,       who is leading the study of black holes with ASPIRE.              Webb also provided the best evidence yet of how early supermassive black       holes potentially regulate the formation of stars in their galaxies. While       supermassive black holes accrete matter, they also can power tremendous       outflows of material. These winds can extend far beyond the black hole       itself, on a galactic scale, and can have a significant impact on the       formation of stars.              "Strong winds from black holes can suppress the formation of stars in       the host galaxy. Such winds have been observed in the nearby universe       but have never been directly observed in the Epoch of Reionization,"       said Yang. "The scale of the wind is related to the structure of the       quasar. In the Webb observations, we are seeing that such winds existed       in the early universe." These results were published in two papers in       The Astrophysical Journal Letters on June 29.               * RELATED_TOPICS        o Space_&_Time        # Black_Holes # Galaxies # Astrophysics # Astronomy #        Stars # Cosmology # Big_Bang # Cosmic_Rays        * RELATED_TERMS        o Dark_matter o Galaxy o Large-scale_structure_of_the_cosmos o        Galaxy_formation_and_evolution o Supergiant o Globular_cluster        o Shape_of_the_Universe o Open_cluster              ==========================================================================       Story Source: Materials provided by       NASA/Goddard_Space_Flight_Center. Note: Content may be edited for style       and length.                     ==========================================================================       Journal Reference:        1. Feige Wang, Jinyi Yang, Joseph F. Hennawi, Xiaohui Fan, Fengwu Sun,        Jaclyn B. Champagne, Tiago Costa, Melanie Habouzit, Ryan Endsley,        Zihao Li, Xiaojing Lin, Romain A. Meyer, Jan-Torge Schindler,        Yunjing Wu, Eduardo Ban~ados, Aaron J. Barth, Aklant K. Bhowmick,        Rebekka Bieri, Laura Blecha, Sarah Bosman, Zheng Cai, Luis        Colina, Thomas Connor, Frederick B. Davies, Roberto Decarli,        Gisella De Rosa, Alyssa B. Drake, Eiichi Egami, Anna-Christina        Eilers, Analis E. Evans, Emanuele Paolo Farina, Zoltan Haiman,        Linhua Jiang, Xiangyu Jin, Hyunsung D. Jun, Koki Kakiichi,        Yana Khusanova, Girish Kulkarni, Mingyu Li, Weizhe Liu, Federica        Loiacono, Alessandro Lupi, Chiara Mazzucchelli, Masafusa Onoue,        Maria A. Pudoka, Sofi'a Rojas-Ruiz, Yue Shen, Michael A. Strauss,        Wei Leong Tee, Benny Trakhtenbrot, Maxime Trebitsch, Bram Venemans,        Marta Volonteri, Fabian Walter, Zhang-Liang Xie, Minghao Yue,        Haowen Zhang, Huanian Zhang, Siwei Zou. A SPectroscopic Survey        of Biased Halos in the Reionization Era (ASPIRE): JWST Reveals a        Filamentary Structure around a z = 6.61 Quasar. The Astrophysical        Journal Letters, 2023; 951 (1): L4 DOI: 10.3847/2041-8213/accd6f       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/06/230629173611.htm              --- up 1 year, 17 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca