home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   EARTH      Uhh, that 3rd rock from the sun?      8,931 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 8,644 of 8,931   
   ScienceDaily to All   
   Scientists edge toward scalable quantum    
   29 Jun 23 22:30:24   
   
   MSGID: 1:317/3 649e5a63   
   PID: hpt/lnx 1.9.0-cur 2019-01-08   
   TID: hpt/lnx 1.9.0-cur 2019-01-08   
    Scientists edge toward scalable quantum simulations on a photonic chip   
    A system using photonics-based synthetic dimensions could be used to help   
   explain complex natural phenomena    
      
     Date:   
         June 29, 2023   
     Source:   
         University of Rochester   
     Summary:   
         A system using photonics-based synthetic dimensions could be used   
         to help explain complex natural phenomena.   
      
      
         Facebook Twitter Pinterest LinkedIN Email   
      
   ==========================================================================   
   FULL STORY   
   ==========================================================================   
   Scientists have made an important step toward developing computers   
   advanced enough to simulate complex natural phenomena at the quantum   
   level. While these types of simulations are too cumbersome or outright   
   impossible for classical computers to handle, photonics-based quantum   
   computing systems could provide a solution.   
      
   A team of researchers from the University of Rochester's Hajim School of   
   Engineering & Applied Sciences developed a new chip-scale optical quantum   
   simulation system that could help make such a system feasible. The team,   
   led by Qiang Lin, a professor of electrical and computer engineering   
   and optics, published their findings in Nature Photonics.   
      
   Lin's team ran the simulations in a synthetic space that mimics the   
   physical world by controlling the frequency, or color, of quantum   
   entangled photons as time elapses. This approach differs from the   
   traditional photonics-based computing methods in which the paths of   
   photons are controlled, and also drastically reduces the physical   
   footprint and resource requirements.   
      
   "For the first time, we have been able to produce a quantum-correlated   
   synthetic crystal," says Lin. "Our approach significantly extends the   
   dimensions of the synthetic space, enabling us to perform simulations   
   of several quantum-scale phenomena such as random walks of quantum   
   entangled photons."  The researchers say that this system can serve as   
   a basis for more intricate simulations in the future.   
      
   "Though the systems being simulated are well understood, this proof-of-   
   principle experiment demonstrates the power of this new approach for   
   scaling up to more complex simulations and computation tasks, something   
   we are very excited to investigate in the future," says Usman Javid   
   '23 PhD (optics), the lead author on the study.   
      
   Other coauthors from Lin's group include Raymond Lopez-Rios, Jingwei Ling,   
   Austin Graf, and Jeremy Staffa.   
      
   The project was supported with funding from the National Science   
   Foundation, the Defense Threat Reduction Agency's Joint Science and   
   Technology Office for Chemical and Biological Defense, and the Defense   
   Advanced Research Projects Agency.   
      
       * RELATED_TOPICS   
             o Computers_&_Math   
                   # Quantum_Computers # Computer_Modeling #   
                   Computers_and_Internet # Spintronics_Research   
                   # Computer_Science # Information_Technology #   
                   Distributed_Computing # Artificial_Intelligence   
       * RELATED_TERMS   
             o Artificial_neural_network o Scientific_method o   
             Security_engineering o Tessellation o Knot_theory   
             o Mathematical_model o Artificial_intelligence o   
             Computer_simulation   
      
   ==========================================================================   
   Story Source: Materials provided by University_of_Rochester. Original   
   written by Luke Auburn.   
      
   Note: Content may be edited for style and length.   
      
      
   ==========================================================================   
   Journal Reference:   
      1. Usman A. Javid, Raymond Lopez-Rios, Jingwei Ling, Austin Graf,   
      Jeremy   
         Staffa, Qiang Lin. Chip-scale simulations in a   
         quantum-correlated synthetic space. Nature Photonics, 2023; DOI:   
         10.1038/s41566-023-01236-7   
   ==========================================================================   
      
   Link to news story:   
   https://www.sciencedaily.com/releases/2023/06/230629193313.htm   
      
   --- up 1 year, 17 weeks, 3 days, 10 hours, 50 minutes   
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)   
   SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114   
   SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854   
   SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35   
   PATH: 317/3 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca