Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,644 of 8,931    |
|    ScienceDaily to All    |
|    Scientists edge toward scalable quantum     |
|    29 Jun 23 22:30:24    |
      MSGID: 1:317/3 649e5a63       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Scientists edge toward scalable quantum simulations on a photonic chip        A system using photonics-based synthetic dimensions could be used to help       explain complex natural phenomena                Date:        June 29, 2023        Source:        University of Rochester        Summary:        A system using photonics-based synthetic dimensions could be used        to help explain complex natural phenomena.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Scientists have made an important step toward developing computers       advanced enough to simulate complex natural phenomena at the quantum       level. While these types of simulations are too cumbersome or outright       impossible for classical computers to handle, photonics-based quantum       computing systems could provide a solution.              A team of researchers from the University of Rochester's Hajim School of       Engineering & Applied Sciences developed a new chip-scale optical quantum       simulation system that could help make such a system feasible. The team,       led by Qiang Lin, a professor of electrical and computer engineering       and optics, published their findings in Nature Photonics.              Lin's team ran the simulations in a synthetic space that mimics the       physical world by controlling the frequency, or color, of quantum       entangled photons as time elapses. This approach differs from the       traditional photonics-based computing methods in which the paths of       photons are controlled, and also drastically reduces the physical       footprint and resource requirements.              "For the first time, we have been able to produce a quantum-correlated       synthetic crystal," says Lin. "Our approach significantly extends the       dimensions of the synthetic space, enabling us to perform simulations       of several quantum-scale phenomena such as random walks of quantum       entangled photons." The researchers say that this system can serve as       a basis for more intricate simulations in the future.              "Though the systems being simulated are well understood, this proof-of-       principle experiment demonstrates the power of this new approach for       scaling up to more complex simulations and computation tasks, something       we are very excited to investigate in the future," says Usman Javid       '23 PhD (optics), the lead author on the study.              Other coauthors from Lin's group include Raymond Lopez-Rios, Jingwei Ling,       Austin Graf, and Jeremy Staffa.              The project was supported with funding from the National Science       Foundation, the Defense Threat Reduction Agency's Joint Science and       Technology Office for Chemical and Biological Defense, and the Defense       Advanced Research Projects Agency.               * RELATED_TOPICS        o Computers_&_Math        # Quantum_Computers # Computer_Modeling #        Computers_and_Internet # Spintronics_Research        # Computer_Science # Information_Technology #        Distributed_Computing # Artificial_Intelligence        * RELATED_TERMS        o Artificial_neural_network o Scientific_method o        Security_engineering o Tessellation o Knot_theory        o Mathematical_model o Artificial_intelligence o        Computer_simulation              ==========================================================================       Story Source: Materials provided by University_of_Rochester. Original       written by Luke Auburn.              Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Usman A. Javid, Raymond Lopez-Rios, Jingwei Ling, Austin Graf,        Jeremy        Staffa, Qiang Lin. Chip-scale simulations in a        quantum-correlated synthetic space. Nature Photonics, 2023; DOI:        10.1038/s41566-023-01236-7       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/06/230629193313.htm              --- up 1 year, 17 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca