Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,612 of 8,931    |
|    ScienceDaily to All    |
|    synthesis of perovskite hydroxide cataly    |
|    26 Jun 23 22:30:24    |
      MSGID: 1:317/3 649a65f5       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08       synthesis of perovskite hydroxide catalysts         Scientists have developed a faster, more efficient way to synthesize CoSn       (OH)6, a powerful catalyst required for high-energy lithium--air batteries                      Date:        June 26, 2023        Source:        Shibaura Institute of Technology        Summary:        CoSn(OH)6 (CSO) is an effective oxygen evolution reaction (OER)        catalyst, necessary for developing next-generation lithium --        air batteries.               However, current methods of synthesizing CSO are complicated        and slow.               Recently, an international research team synthesized CSO in a        single step within 20 minutes using solution plasma to generate CSO        nanocrystals with excellent OER catalytic properties. Their findings        could boost the manufacturing of high energy density batteries.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       With global warming on the rise, it has become imperative to       reduce fossil fuel dependency and switch to alternate green energy       sources. The development of electric vehicles is a move towards this       direction. However, electric vehicles require high energy density       batteries for their functioning, and conventional lithium-ion batteries       are not up to the task. Theoretically, lithium-air batteries provide a       higher energy density than lithium-ion batteries. However, before they can       be put to practical use, these batteries need to be made energy efficient,       their cycle characteristics need to be enhanced, and the overpotential       needed to charge/discharge the oxygen redox reaction needs to be reduced.              To address these issues, a suitable catalyst is needed to accelerate       the oxygen evolution reaction (OER) inside the battery. The OER is       an extremely important chemical reaction involved in water splitting       for improving the performance of storage batteries. Rare and expensive       noble metal oxides such as ruthenium(IV) oxide (RuO2) and iridium(IV)       oxide (IrO2) have typically been used as catalysts to expedite the OER       of metal-air batteries. More affordable catalytic materials include       transition metals, such as perovskite-type oxides and hydroxides, which       are known to be highly active for the OER. CoSn(OH)6 (CSO) is one such       perovskite-type hydroxide that is known to be a promising OER catalyst.              However, current methods of synthesizing CSO are slow (require over 12       hours) and require multiple steps.              In a recent breakthrough, a research team from Shibaura Institute of       Technology in Japan, led by Prof. Takahiro Ishizaki along with Mr. Masaki       Narahara and Dr.              Sangwoo Chae, managed to synthesize CSO in just 20 minutes using only a       single step! To achieve this remarkable feat, the team used a solution       plasma process, a cutting-edge method for material synthesis in a       nonthermal reaction field.              Their research was published in Issue 11 of the journal Sustainable       Energy & Fuels on 17 April 2023.              The team used X-ray diffractometry to show that highly crystalline CSO       could be synthesized from a precursor solution by adjusting the pH to       values greater than 10 to 12. Using a transmission electron microscope,       they further noticed that the CSO crystals were cube-shaped, with sizes       of about 100-300 nm. The team also used X-ray photoelectron spectroscopy       to investigate the composition and binding sites of CSO crystals and       found Cobalt (Co) in a divalent and Tin (Sn) in a tetravalent state       within the compound.              Finally, the team used an electrochemical method to look at the properties       of CSO as a catalyst for OER. They observed that synthesized CSO had       an overpotential of 350 mV at a current density of 10 mA cm-2. "CSO       synthesized at pH12 had the best catalytic property among all samples       synthesized. In fact, this sample had slightly better catalytic properties       than that of even commercial-grade RuO2," highlights Prof. Ishizaki. This       was confirmed when the pH 12 sample was shown to have the lowest       potential, specifically 104 mV lower than that of commercially available       RuO2 vs. reversible hydrogen electrode at 10 mA cm-2.              Overall, this study describes, for the first time, an easy and efficient       process for synthesizing CSO. This process makes CSO practically effective       for use in lithium-air batteries and opens a new avenue towards the       realization of next-generation electric batteries.              "The synthesized CSO showed superior electrocatalytic properties for       OER. We hope that the perovskite-type CSO materials will be applied       to energy devices and will contribute to the high functionalization of       electric vehicles," Prof.              Ishizaki concludes. "This, in turn, will bring us one step closer towards       achieving carbon neutrality by enabling a new energy system independent       of fossil fuels."        * RELATED_TOPICS        o Matter_&_Energy        # Batteries # Energy_Technology # Energy_and_Resources        # Alternative_Fuels # Petroleum # Materials_Science #        Chemistry # Physics        * RELATED_TERMS        o Lithium o Catalysis o Autocatalysis o Alternative_fuel_vehicle        o Solar_power o Catalytic_converter o Acid o Aerodynamics              ==========================================================================       Story Source: Materials provided by       Shibaura_Institute_of_Technology. Note: Content may be edited for style       and length.                     ==========================================================================       Journal Reference:        1. Masaki Narahara, So Yoon Lee, Kodai Sasaki, Kaito Fukushima, Kenichi        Tanaka, Sangwoo Chae, Xiulan Hu, Gasidit Panomsuwan, Takahiro        Ishizaki.               Solution plasma synthesis of perovskite hydroxide CoSn(OH)6 nanocube        electrocatalysts toward the oxygen evolution reaction. Sustainable        Energy & Fuels, 2023; 7 (11): 2582 DOI: 10.1039/D3SE00221G       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/06/230626163939.htm              --- up 1 year, 17 weeks, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca