home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   EARTH      Uhh, that 3rd rock from the sun?      8,931 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 8,612 of 8,931   
   ScienceDaily to All   
   synthesis of perovskite hydroxide cataly   
   26 Jun 23 22:30:24   
   
   MSGID: 1:317/3 649a65f5   
   PID: hpt/lnx 1.9.0-cur 2019-01-08   
   TID: hpt/lnx 1.9.0-cur 2019-01-08   
   synthesis of perovskite hydroxide catalysts    
    Scientists have developed a faster, more efficient way to synthesize CoSn   
   (OH)6, a powerful catalyst required for high-energy lithium--air batteries   
      
      
     Date:   
         June 26, 2023   
     Source:   
         Shibaura Institute of Technology   
     Summary:   
         CoSn(OH)6 (CSO) is an effective oxygen evolution reaction (OER)   
         catalyst, necessary for developing next-generation lithium --   
         air batteries.   
      
         However, current methods of synthesizing CSO are complicated   
         and slow.   
      
         Recently, an international research team synthesized CSO in a   
         single step within 20 minutes using solution plasma to generate CSO   
         nanocrystals with excellent OER catalytic properties. Their findings   
         could boost the manufacturing of high energy density batteries.   
      
      
         Facebook Twitter Pinterest LinkedIN Email   
      
   ==========================================================================   
   FULL STORY   
   ==========================================================================   
   With global warming on the rise, it has become imperative to   
   reduce fossil fuel dependency and switch to alternate green energy   
   sources. The development of electric vehicles is a move towards this   
   direction. However, electric vehicles require high energy density   
   batteries for their functioning, and conventional lithium-ion batteries   
   are not up to the task. Theoretically, lithium-air batteries provide a   
   higher energy density than lithium-ion batteries. However, before they can   
   be put to practical use, these batteries need to be made energy efficient,   
   their cycle characteristics need to be enhanced, and the overpotential   
   needed to charge/discharge the oxygen redox reaction needs to be reduced.   
      
   To address these issues, a suitable catalyst is needed to accelerate   
   the oxygen evolution reaction (OER) inside the battery. The OER is   
   an extremely important chemical reaction involved in water splitting   
   for improving the performance of storage batteries. Rare and expensive   
   noble metal oxides such as ruthenium(IV) oxide (RuO2) and iridium(IV)   
   oxide (IrO2) have typically been used as catalysts to expedite the OER   
   of metal-air batteries. More affordable catalytic materials include   
   transition metals, such as perovskite-type oxides and hydroxides, which   
   are known to be highly active for the OER. CoSn(OH)6 (CSO) is one such   
   perovskite-type hydroxide that is known to be a promising OER catalyst.   
      
   However, current methods of synthesizing CSO are slow (require over 12   
   hours) and require multiple steps.   
      
   In a recent breakthrough, a research team from Shibaura Institute of   
   Technology in Japan, led by Prof. Takahiro Ishizaki along with Mr. Masaki   
   Narahara and Dr.   
      
   Sangwoo Chae, managed to synthesize CSO in just 20 minutes using only a   
   single step! To achieve this remarkable feat, the team used a solution   
   plasma process, a cutting-edge method for material synthesis in a   
   nonthermal reaction field.   
      
   Their research was published in Issue 11 of the journal Sustainable   
   Energy & Fuels on 17 April 2023.   
      
   The team used X-ray diffractometry to show that highly crystalline CSO   
   could be synthesized from a precursor solution by adjusting the pH to   
   values greater than 10 to 12. Using a transmission electron microscope,   
   they further noticed that the CSO crystals were cube-shaped, with sizes   
   of about 100-300 nm. The team also used X-ray photoelectron spectroscopy   
   to investigate the composition and binding sites of CSO crystals and   
   found Cobalt (Co) in a divalent and Tin (Sn) in a tetravalent state   
   within the compound.   
      
   Finally, the team used an electrochemical method to look at the properties   
   of CSO as a catalyst for OER. They observed that synthesized CSO had   
   an overpotential of 350 mV at a current density of 10 mA cm-2. "CSO   
   synthesized at pH12 had the best catalytic property among all samples   
   synthesized. In fact, this sample had slightly better catalytic properties   
   than that of even commercial-grade RuO2," highlights Prof. Ishizaki. This   
   was confirmed when the pH 12 sample was shown to have the lowest   
   potential, specifically 104 mV lower than that of commercially available   
   RuO2 vs. reversible hydrogen electrode at 10 mA cm-2.   
      
   Overall, this study describes, for the first time, an easy and efficient   
   process for synthesizing CSO. This process makes CSO practically effective   
   for use in lithium-air batteries and opens a new avenue towards the   
   realization of next-generation electric batteries.   
      
   "The synthesized CSO showed superior electrocatalytic properties for   
   OER. We hope that the perovskite-type CSO materials will be applied   
   to energy devices and will contribute to the high functionalization of   
   electric vehicles," Prof.   
      
   Ishizaki concludes. "This, in turn, will bring us one step closer towards   
   achieving carbon neutrality by enabling a new energy system independent   
   of fossil fuels."   
       * RELATED_TOPICS   
             o Matter_&_Energy   
                   # Batteries # Energy_Technology # Energy_and_Resources   
                   # Alternative_Fuels # Petroleum # Materials_Science #   
                   Chemistry # Physics   
       * RELATED_TERMS   
             o Lithium o Catalysis o Autocatalysis o Alternative_fuel_vehicle   
             o Solar_power o Catalytic_converter o Acid o Aerodynamics   
      
   ==========================================================================   
   Story Source: Materials provided by   
   Shibaura_Institute_of_Technology. Note: Content may be edited for style   
   and length.   
      
      
   ==========================================================================   
   Journal Reference:   
      1. Masaki Narahara, So Yoon Lee, Kodai Sasaki, Kaito Fukushima, Kenichi   
         Tanaka, Sangwoo Chae, Xiulan Hu, Gasidit Panomsuwan, Takahiro   
         Ishizaki.   
      
         Solution plasma synthesis of perovskite hydroxide CoSn(OH)6 nanocube   
         electrocatalysts toward the oxygen evolution reaction. Sustainable   
         Energy & Fuels, 2023; 7 (11): 2582 DOI: 10.1039/D3SE00221G   
   ==========================================================================   
      
   Link to news story:   
   https://www.sciencedaily.com/releases/2023/06/230626163939.htm   
      
   --- up 1 year, 17 weeks, 10 hours, 50 minutes   
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)   
   SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114   
   SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854   
   SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35   
   PATH: 317/3 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca