Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,590 of 8,931    |
|    ScienceDaily to All    |
|    Sinking seamount offers clues to slow mo    |
|    22 Jun 23 22:30:24    |
      MSGID: 1:317/3 64951ff5       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Sinking seamount offers clues to slow motion earthquakes                Date:        June 22, 2023        Source:        University of Texas at Austin        Summary:        The first ever 3D seismic imaging of a subducting seamount shows        a previously unknown sediment trail in Earth's crust off the coast        of New Zealand. Scientists think the sediment patches help release        tectonic pressure gradually in slow slip earthquakes instead of        violent tremors.               The findings will help researchers search for similar patterns at        other subduction zones like Cascadia in the U.S. Pacific Northwest.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Scientists have long puzzled over what happens when seamounts -- mountains       and volcanoes on the seafloor -- are pulled into subduction zones. Now,       new research from The University of Texas at Austin shows that when       seamounts sink, they leave behind a trail of soft sediments. The       researchers think the sediment patches help tectonic pressure escape       gradually in slow slip earthquakes instead of violent tremors.              The findings, published June 7, 2023, in the journal Nature Geoscience,       can be used to adjust earthquake models and help scientists unravel the       mechanisms that drive earthquakes.              The research was led by Nathan Bangs, a senior research scientist at       the University of Texas Institute for Geophysics. In 2018, Bangs led an       ocean seismic survey that resulted in the first ever 3D scan of a large       subducting seamount. Known as the Pāpaku Seamount, the long extinct       volcano lies some three miles under the seafloor inside the Hikurangi       subduction zone off the coast of New Zealand.              Images from the scan show the seamount colliding with the subduction       zone and the pattern of stresses, fluids and sediments surrounding       it. Previous models suggested sediments are pushed down the subduction       zone ahead of the seamount, but the scan revealed something different:       a massive sediment trail in Pāpaku's wake.              In another surprise, the scientists spotted the fading trail of a much       larger seamount that had long since sunk beneath New Zealand's North       Island.              According to Bangs, the discovery suggests that sinking seamounts drag       down enough water-rich sediment to create conditions in the crust suitable       for slow slip earthquakes, at least in New Zealand.              "That older one seems to be very much linked to an uplifted ridge that's       really in the bullseye of where recent slow slip activity has been,"       Bangs said.              "There could be other places like Cascadia (in the U.S. Pacific Northwest)       that have subducting seamounts and a lot of sediment, but because the       subducting crust there typically has less water than Hikurangi, they may       be less likely to have the same kind of shallow slow slip activity."       Slow slip earthquakes are slow motion versions of large earthquakes,       releasing similar levels of pent-up tectonic energy but in a harmless       creeping fashion that can take days or weeks to unfold. Scientists believe       that the make-up of the crust is a major factor in how tectonic energy       is released, with softer, wetter rocks allowing plates to slip slowly,       while drier, brittle rocks store energy until they fail in violent and       deadly megaquakes.              The new findings reveal how those conditions sometimes come about and       importantly, said Bangs, tell scientists what to look for at the world's       other subduction zones.              The research and seismic survey were funded by the National Science       Foundation and similar scientific agencies in New Zealand, the United       Kingdom and Japan.              The University of Texas Institute for Geophysics is a research unit of       the Jackson School of Geosciences.               * RELATED_TOPICS        o Earth_&_Climate        # Earthquakes # Natural_Disasters # Geography # Geology        o Fossils_&_Ruins        # Early_Climate # Paleontology        * RELATED_TERMS        o Earthquake o Geologic_fault o Alpine_Fault o Sedimentary_rock        o Crust_(geology) o Mid-ocean_ridge o Paleoclimatology o Volcano              ==========================================================================       Story Source: Materials provided by University_of_Texas_at_Austin. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Nathan L. Bangs, Julia K. Morgan, Rebecca E. Bell, Shuoshuo Han,        Ryuta        Arai, Shuichi Kodaira, Andrew C. Gase, Xinming Wu, Richard Davy,        Laura Frahm, Hannah L. Tilley, Daniel H. N. Barker, Joel H. Edwards,        Harold J.               Tobin, Tim J. Reston, Stuart A. Henrys, Gregory F. Moore, Dan        Bassett, Richard Kellett, Valerie Stucker, Bill Fry. Slow slip        along the Hikurangi margin linked to fluid-rich sediments trailing        subducting seamounts.               Nature Geoscience, 2023; 16 (6): 505 DOI: 10.1038/s41561-023-01186-3       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/06/230622120919.htm              --- up 1 year, 16 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45 5075/35       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca