Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,422 of 8,931    |
|    ScienceDaily to All    |
|    Astrophysicists confirm the faintest gal    |
|    01 Jun 23 22:30:42    |
      MSGID: 1:317/3 64797080       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Astrophysicists confirm the faintest galaxy ever seen in the early       universe         The small, distant galaxy JD1 is typical of the kind that burned through       hydrogen left over from the Big Bang                Date:        June 1, 2023        Source:        University of California - Los Angeles        Summary:        After the Big Bang, the universe expanded and cooled sufficiently        for hydrogen atoms to form. In the absence of light from the first        stars and galaxies, the universe entered a period known as the        cosmic dark ages.               The first stars and galaxies appeared several hundred million        years later and began burning away the hydrogen fog left over        from the Big Bang, rendering the universe transparent, like it is        today. Researchers have now confirmed the existence of a distant,        faint galaxy typical of those whose light burned through the        hydrogen atoms; the finding should help them understand how the        cosmic dark ages ended.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       After the Big Bang, the universe expanded and cooled sufficiently for       hydrogen atoms to form. In the absence of light from the first stars       and galaxies, the universe entered a period known as the cosmic dark ages.              The first stars and galaxies appeared several hundred million years later       and began burning away the hydrogen fog left over from the Big Bang,       rendering the universe transparent, like it is today.              Researchers led by astrophysicists from UCLA confirmed the existence of       a distant, faint galaxy typical of those whose light burned through the       hydrogen atoms; the finding should help them understand how the cosmic       dark ages ended.              An international research team led by UCLA astrophysicists has confirmed       the existence of the faintest galaxy ever seen in the early universe. The       galaxy, called JD1, is one of the most distant identified to date, and       it is typical of the kinds of galaxies that burned through the fog of       hydrogen atoms left over from the Big Bang, letting light shine through       the universe and shaping it into what exists today.              The discovery was made using NASA's James Webb Space Telescope, and the       findings are published in the journal Nature.              The first billion years of the universe's life were a crucial period       in its evolution. After the Big Bang, approximately 13.8 billion years       ago, the universe expanded and cooled sufficiently for hydrogen atoms       to form. Hydrogen atoms absorb ultraviolet photons from young stars;       however, until the birth of the first stars and galaxies, the universe       became dark and entered a period known as the cosmic dark ages. The       appearance of the first stars and galaxies a few hundred million years       later bathed the universe in energetic ultraviolet light which began       burning, or ionizing, the hydrogen fog. That, in turn, enabled photons       to travel through space, rendering the universe transparent.              Determining the types of galaxies that dominated that era -- dubbed the       Epoch of Reionization -- is a major goal in astronomy today, but until       the development of the Webb telescope, scientists lacked the sensitive       infrared instruments required to study the first generation of galaxies.              "Most of the galaxies found with JWST so far are bright galaxies that       are rare and not thought to be particularly representative of the young       galaxies that populated the early universe," said Guido Roberts-Borsani,       a UCLA postdoctoral researcher and the study's first author. "As such,       while important, they are not thought to be the main agents that burned       through all of that hydrogen fog.              "Ultra-faint galaxies such as JD1, on the other hand, are far more       numerous, which is why we believe they are more representative of the       galaxies that conducted the reionization process, allowing ultraviolet       light to travel unimpeded through space and time." JD1 is so dim and so       far away that it is challenging to study without a powerful telescope --       and a helping hand from nature. JD1 is located behind a large cluster       of nearby galaxies, called Abell 2744, whose combined gravitational       strength bends and amplifies the light from JD1, making it appear larger       and 13 times brighter than it otherwise would. The effect, known as       gravitational lensing, is similar to how a magnifying glass distorts and       amplifies light within its field of view; without gravitational lensing,       JD1 would likely have been missed.              The researchers used the Webb Telescope's near-infrared spectrograph       instrument, NIRSpec, to obtain an infrared light spectrum of the galaxy,       allowing them to determine its precise age and its distance from Earth,       as well as the number of stars and amount of dust and heavy elements       that it formed in its relatively short lifetime.              The combination of the galaxy's gravitational magnification and new images       from another one of the Webb Telescope's near-infrared instruments,       NIRCam, also made it possible for the team to study the galaxy's       structure in unprecedented detail and resolution, revealing three main       elongated clumps of dust and gas that are forming stars. The team used       the new data to trace JD1's light back to its original source and shape,       revealing a compact galaxy just a fraction of the size of older galaxies       like the Milky Way, which is 13.6 billion years old.              Because light takes time to travel to Earth, JD1 is seen as it was       approximately 13.3 billion years ago, when the universe was only about 4%       of its present age.              "Before the Webb telescope switched on, just a year ago, we could not       even dream of confirming such a faint galaxy," said Tommaso Treu, a UCLA       physics and astronomy professor, and the study's second author. "The       combination of JWST and the magnifying power of gravitational lensing       is a revolution. We are rewriting the book on how galaxies formed and       evolved in the immediate aftermath of the Big Bang."        * RELATED_TOPICS        o Space_&_Time        # Astrophysics # Galaxies # Big_Bang # Cosmology #        Astronomy # NASA # Space_Telescopes # Stars        * RELATED_TERMS        o Galaxy_formation_and_evolution o Big_Bang_nucleosynthesis o        Big_Bang o Cosmic_microwave_background_radiation o Dark_matter        o Atom o Galaxy o Large-scale_structure_of_the_cosmos              ==========================================================================       Story Source: Materials provided by       University_of_California_-_Los_Angeles. Original written by Holly       Ober. Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Guido Roberts-Borsani, Tommaso Treu, Wenlei Chen, Takahiro        Morishita,        Eros Vanzella, Adi Zitrin, Pietro Bergamini, Marco Castellano,        Adriano Fontana, Karl Glazebrook, Claudio Grillo, Patrick L. Kelly,        Emiliano Merlin, Themiya Nanayakkara, Diego Paris, Piero Rosati,        Lilan Yang, Ana Acebron, Andrea Bonchi, Kit Boyett, Marusa        Bradač, Gabriel Brammer, Tom Broadhurst, Antonello Calabro',        Jose M. Diego, Alan Dressler, Lukas J. Furtak, Alexei V. Filippenko,        Alaina Henry, Anton M. Koekemoer, Nicha Leethochawalit, Matthew        A. Malkan, Charlotte Mason, Amata Mercurio, Benjamin Metha,        Laura Pentericci, Justin Pierel, Steven Rieck, Namrata Roy, Paola        Santini, Victoria Strait, Robert Strausbaugh, Michele Trenti,        Benedetta Vulcani, Lifan Wang, Xin Wang, Rogier A. Windhorst. The        nature of an ultra-faint galaxy in the cosmic dark ages seen with        JWST. Nature, 2023; DOI: 10.1038/s41586-023-05994-w       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/06/230601155742.htm              --- up 1 year, 13 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca