Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,405 of 8,931    |
|    ScienceDaily to All    |
|    Under pressure: Foundations of stellar p    |
|    31 May 23 22:30:34    |
      MSGID: 1:317/3 64781f10       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Under pressure: Foundations of stellar physics and nuclear fusion       investigated                Date:        May 31, 2023        Source:        University of Warwick        Summary:        Research using the world's most energetic laser has shed light        on the properties of highly compressed matter -- essential to        understanding the structure of giant planets and stars, and to        develop controlled nuclear fusion, a process that could harvest        carbon-free energy.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Research using the world's most energetic laser has shed light on the       properties of highly compressed matter -- essential to understanding the       structure of giant planets and stars, and to develop controlled nuclear       fusion, a process that could harvest carbon-free energy.              Matter in the interior of giant planets and some relatively cool stars       is highly compressed by the weight of the layers above. The extreme       pressures generated are strong enough to charge of atoms and generate       free electrons, in a process known as ionisation. The material properties       of such matter are mostly determined by the degree of ionisation of       the atoms. While ionisation in burning stars is primarily determined       by temperature, pressure-driven ionization dominates in cooler stellar       objects. However, this process is not well understood, and the extreme       states of matter required are very difficult to create in the laboratory       limiting the predictive power required to model celestial objects.              Extreme conditions also occur in laser-driven fusion experiments where       hydrogen atoms are fused under high pressures and temperatures to helium,       a heavier element. This process has been heralded as an unlimited,       carbon free energy source -- by using large excess energy generated by       the fusion reactions to generate electricity. Progress in this grand       scientific challenge relies heavily on numerical modelling and the       ionisation balance in high-pressure systems is of central importance.              The only way to study this complex process in the laboratory is       to dynamically compress matter to extreme densities which requires       very large energy inputs in a very short time. In a new experiment       published today in Nature, scientists have done just that using the       largest and most energetic laser in the world, the National Ignition       Facility (NIF). Through their research at the Lawrence Livermore       National Laboratory (LLNL), US, the team provide new insights on the       complex process of pressure-driven ionisation in giant planets and       stars. They investigated the properties and behaviour of matter under       extreme compression, offering important implications for astrophysics       and nuclear fusion research.              The international research team used NIF to generate the extreme       conditions necessary for pressure-driven ionisation. They focused 184       laser beams on a cavity, converting the laser energy into X-rays that       heated a 2mm metal shell placed in the centre. As the outside of the shell       rapidly expanded due to the heating, the inside was driven inwards --       reaching temperatures around two million kelvins (1.9m degrees Celsius)       and pressures up to three billion atmospheres -- creating a tiny piece       of matter as found in dwarf stars for just a few nanoseconds.              The highly compressed metal shell (made of beryllium) was then       analysed using X-rays to reveal its density, temperature, and       electron structure. The findings revealed that, following strong       heating and compression, at least three out of four electrons in       beryllium transitioned into conducting states, that is, they can move       independent from the nuclear cores of the atoms. Additionally, the study       uncovered unexpectedly weak elastic X-ray scattering, indicating reduced       localization of the remaining electron, that is a new stage shortly       before all electrons become free and thus revealing the pathways to a       fully ionised state.              LLNL physicist Tilo Do"ppner, who led the project, said: "By recreating       extreme conditions similar to those inside giant planets and stars,       we were able to observe changes in material properties and electron       structure that are not captured by current models. Our work opens new       avenues for studying and modeling the behavior of matter under extreme       compression. The ionization in dense plasmas is a key parameter as it       affects the equation of state, thermodynamic properties, and radiation       transport through opacity." Associate Professor Dirk Gericke, University       of Warwick, Department of Physics, added: "Having created and diagnosed       these extreme pressures in the laboratory gives an invaluable benchmark       for our theoretical models. Improved predictive capabilities are urgently       needed not only for astrophysics but also for further progress toward       controlled nuclear fusion which would allow to harvest the energy source       of the stars for humanity." The pioneering research was the result       of an international collaboration to develop x-ray Thomson scattering       at the NIF as part of LLNL's Discovery Science program. Collaborators       included scientists from University of Rostock (Germany), University of       Warwick (U.K.), GSI Helmholtz Center for Heavy Ion Research (Germany),       University of California Berkeley, SLAC National Accelerator Laboratory,       Helmholtz-Zentrum Dresden-Rossendorf (Germany), University of Lyon       (France), Los Alamos National Laboratory, Imperial College London (U.K.),       and First Light Fusion Ltd. (U.K.).               * RELATED_TOPICS        o Space_&_Time        # Astrophysics # Dark_Matter # Stars        o Matter_&_Energy        # Physics # Nuclear_Energy # Quantum_Physics        o Earth_&_Climate        # Energy_and_the_Environment # Renewable_Energy # Weather        * RELATED_TERMS        o Nuclear_fusion o Stellar_nucleosynthesis o Nucleosynthesis        o Effects_of_nuclear_explosions o Nuclear_fission o Astronomy        o Supernova o Atom              ==========================================================================       Story Source: Materials provided by University_of_Warwick. Note: Content       may be edited for style and length.                     ==========================================================================       Journal Reference:        1. T. Do"ppner, M. Bethkenhagen, D. Kraus, P. Neumayer, D. A. Chapman,        B.               Bachmann, R. A. Baggott, M. P. Bo"hme, L. Divol, R. W. Falcone,        L. B.               Fletcher, O. L. Landen, M. J. MacDonald, A. M. Saunders,        M. Scho"rner, P.               A. Sterne, J. Vorberger, B. B. L. Witte, A. Yi, R. Redmer,        S. H. Glenzer, D. O. Gericke. Observing the onset of        pressure-driven K-shell delocalization. Nature, 2023; DOI:        10.1038/s41586-023-05996-8       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/05/230531150055.htm              --- up 1 year, 13 weeks, 2 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca