Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,380 of 8,931    |
|    ScienceDaily to All    |
|    New catalyst lowers cost for producing e    |
|    30 May 23 22:30:40    |
      MSGID: 1:317/3 6476cda5       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        New catalyst lowers cost for producing environmentally sustainable       hydrogen from water                Date:        May 30, 2023        Source:        DOE/Argonne National Laboratory        Summary:        A team has developed a new catalyst composed of elements abundant in        the Earth. It could make possible the low-cost and energy-efficient        production of hydrogen for use in transportation and industrial        applications.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       A plentiful supply of clean energy is lurking in plain sight. It       is the hydrogen we can extract from water (H2O) using renewable       energy. Scientists are seeking low-cost methods for producing clean       hydrogen from water to replace fossil fuels, as part of the quest to       combat climate change.              Hydrogen can power vehicles while emitting nothing but water. Hydrogen       is also an important chemical for many industrial processes, most notably       in steel making and ammonia production. Using cleaner hydrogen is highly       desirable in those industries.              A multi-institutional team led by the U.S. Department of Energy's       (DOE) Argonne National Laboratory has developed a low-cost catalyst       for a process that yields clean hydrogen from water. Other contributors       include DOE's Sandia National Laboratories and Lawrence Berkeley National       Laboratory, as well as Giner Inc.              "A process called electrolysis produces hydrogen and oxygen from water       and has been around for more than a century," said Di-Jia Liu, senior       chemist at Argonne. He also holds a joint appointment in the Pritzker       School of Molecular Engineering at the University of Chicago.              Proton exchange membrane (PEM) electrolyzers represent a new generation       of technology for this process. They can split water into hydrogen and       oxygen with higher efficiency at near room temperature. The reduced       energy demand makes them an ideal choice for producing clean hydrogen       by using renewable but intermittent sources, such as solar and wind.              This electrolyzer runs with separate catalysts for each of its electrodes       (cathode and anode). The cathode catalyst yields hydrogen, while the anode       catalyst forms oxygen. A problem is that the anode catalyst uses iridium,       which has a current market price of around $5,000 per ounce. The lack       of supply and high cost of iridium pose a major barrier for widespread       adoption of PEM electrolyzers.              The main ingredient in the new catalyst is cobalt, which is substantially       cheaper than iridium. "We sought to develop a low-cost anode catalyst       in a PEM electrolyzer that generates hydrogen at high throughput while       consuming minimal energy," Liu said. "By using the cobalt-based catalyst       prepared by our method, one could remove the main bottleneck of cost to       producing clean hydrogen in an electrolyzer." Giner Inc., a leading       research and development company working toward commercialization of       electrolyzers and fuel cells, evaluated the new catalyst using its PEM       electrolyzer test stations under industrial operating conditions.              The performance and durability far exceeded that of competitors'       catalysts.              Important to further advancing the catalyst performance is understanding       the reaction mechanism at the atomic scale under electrolyzer operating       conditions.              The team deciphered critical structural changes that occur in the catalyst       under operating conditions by using X-ray analyses at the Advanced Photon       Source (APS) at Argonne. They also identified key catalyst features       using electron microscopy at Sandia Labs and at Argonne's Center for       Nanoscale Materials (CNM). The APS and CNM are both DOE Office of Science       user facilities.              "We imaged the atomic structure on the surface of the new catalyst at       various stages of preparation," said Jianguo Wen, an Argonne materials       scientist.              In addition, computational modeling at Berkeley Lab revealed important       insights into the catalyst's durability under reaction conditions.              The team's achievement is a step forward in DOE's Hydrogen Energy       Earthshot initiative, which mimics the U.S. space program's "Moon Shot"       of the 1960s. Its ambitious goal is to lower the cost for green hydrogen       production to one dollar per kilogram in a decade. Production of green       hydrogen at that cost could reshape the nation's economy. Applications       include the electric grid, manufacturing, transportation and residential       and commercial heating.              "More generally, our results establish a promising path forward in       replacing catalysts made from expensive precious metals with elements       that are much less expensive and more abundant," Liu noted.              This research was published on May 12 in Science and was supported by       the DOE Office of Energy Efficiency and Renewable Energy, Hydrogen and       Fuel Cell Technologies Office, as well as by Argonne Laboratory Directed       Research and Development funding.              In addition to Liu, Argonne authors are Lina Chong (now at Shanghai Jiao       Tong University), Jianguo Wen, Haiping Xu, A. Jeremy Kropf, Wenqian       Xu and Xiao-Min Lin. Authors from Berkeley Lab include Guoping Gao,       Haixia Li and Ling-Wang Wang. The author from Sandia Labs is Joshua       D. Sugar. Contributors Zach Green and Hui Xu are from Giner Inc.               * RELATED_TOPICS        o Matter_&_Energy        # Alternative_Fuels # Fuel_Cells # Energy_and_Resources        # Energy_Technology        o Earth_&_Climate        # Energy_and_the_Environment # Renewable_Energy #        Sustainability # Water        * RELATED_TERMS        o Energy_development o Raney_nickel o Nuclear_fusion o        History_of_Earth o Catalysis o Ozone o Hydrogen o Solar_power              ==========================================================================       Story Source: Materials provided by       DOE/Argonne_National_Laboratory. Original written by Joseph       E. Harmon. Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Lina Chong, Guoping Gao, Jianguo Wen, Haixia Li, Haiping Xu,        Zach Green,        Joshua D. Sugar, A. Jeremy Kropf, Wenqian Xu, Xiao-Min        Lin, Hui Xu, Lin- Wang Wang, Di-Jia Liu. La- and Mn-doped        cobalt spinel oxygen evolution catalyst for proton exchange        membrane electrolysis. Science, 2023; 380 (6645): 609 DOI:        10.1126/science.ade1499       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/05/230530173859.htm              --- up 1 year, 13 weeks, 1 day, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca