home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   EARTH      Uhh, that 3rd rock from the sun?      8,931 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 8,380 of 8,931   
   ScienceDaily to All   
   New catalyst lowers cost for producing e   
   30 May 23 22:30:40   
   
   MSGID: 1:317/3 6476cda5   
   PID: hpt/lnx 1.9.0-cur 2019-01-08   
   TID: hpt/lnx 1.9.0-cur 2019-01-08   
    New catalyst lowers cost for producing environmentally sustainable   
   hydrogen from water    
      
     Date:   
         May 30, 2023   
     Source:   
         DOE/Argonne National Laboratory   
     Summary:   
         A team has developed a new catalyst composed of elements abundant in   
         the Earth. It could make possible the low-cost and energy-efficient   
         production of hydrogen for use in transportation and industrial   
         applications.   
      
      
         Facebook Twitter Pinterest LinkedIN Email   
      
   ==========================================================================   
   FULL STORY   
   ==========================================================================   
   A plentiful supply of clean energy is lurking in plain sight. It   
   is the hydrogen we can extract from water (H2O) using renewable   
   energy. Scientists are seeking low-cost methods for producing clean   
   hydrogen from water to replace fossil fuels, as part of the quest to   
   combat climate change.   
      
   Hydrogen can power vehicles while emitting nothing but water. Hydrogen   
   is also an important chemical for many industrial processes, most notably   
   in steel making and ammonia production. Using cleaner hydrogen is highly   
   desirable in those industries.   
      
   A multi-institutional team led by the U.S. Department of Energy's   
   (DOE) Argonne National Laboratory has developed a low-cost catalyst   
   for a process that yields clean hydrogen from water. Other contributors   
   include DOE's Sandia National Laboratories and Lawrence Berkeley National   
   Laboratory, as well as Giner Inc.   
      
   "A process called electrolysis produces hydrogen and oxygen from water   
   and has been around for more than a century," said Di-Jia Liu, senior   
   chemist at Argonne. He also holds a joint appointment in the Pritzker   
   School of Molecular Engineering at the University of Chicago.   
      
   Proton exchange membrane (PEM) electrolyzers represent a new generation   
   of technology for this process. They can split water into hydrogen and   
   oxygen with higher efficiency at near room temperature. The reduced   
   energy demand makes them an ideal choice for producing clean hydrogen   
   by using renewable but intermittent sources, such as solar and wind.   
      
   This electrolyzer runs with separate catalysts for each of its electrodes   
   (cathode and anode). The cathode catalyst yields hydrogen, while the anode   
   catalyst forms oxygen. A problem is that the anode catalyst uses iridium,   
   which has a current market price of around $5,000 per ounce. The lack   
   of supply and high cost of iridium pose a major barrier for widespread   
   adoption of PEM electrolyzers.   
      
   The main ingredient in the new catalyst is cobalt, which is substantially   
   cheaper than iridium. "We sought to develop a low-cost anode catalyst   
   in a PEM electrolyzer that generates hydrogen at high throughput while   
   consuming minimal energy," Liu said. "By using the cobalt-based catalyst   
   prepared by our method, one could remove the main bottleneck of cost to   
   producing clean hydrogen in an electrolyzer."  Giner Inc., a leading   
   research and development company working toward commercialization of   
   electrolyzers and fuel cells, evaluated the new catalyst using its PEM   
   electrolyzer test stations under industrial operating conditions.   
      
   The performance and durability far exceeded that of competitors'   
   catalysts.   
      
   Important to further advancing the catalyst performance is understanding   
   the reaction mechanism at the atomic scale under electrolyzer operating   
   conditions.   
      
   The team deciphered critical structural changes that occur in the catalyst   
   under operating conditions by using X-ray analyses at the Advanced Photon   
   Source (APS) at Argonne. They also identified key catalyst features   
   using electron microscopy at Sandia Labs and at Argonne's Center for   
   Nanoscale Materials (CNM). The APS and CNM are both DOE Office of Science   
   user facilities.   
      
   "We imaged the atomic structure on the surface of the new catalyst at   
   various stages of preparation," said Jianguo Wen, an Argonne materials   
   scientist.   
      
   In addition, computational modeling at Berkeley Lab revealed important   
   insights into the catalyst's durability under reaction conditions.   
      
   The team's achievement is a step forward in DOE's Hydrogen Energy   
   Earthshot initiative, which mimics the U.S. space program's "Moon Shot"   
   of the 1960s. Its ambitious goal is to lower the cost for green hydrogen   
   production to one dollar per kilogram in a decade. Production of green   
   hydrogen at that cost could reshape the nation's economy. Applications   
   include the electric grid, manufacturing, transportation and residential   
   and commercial heating.   
      
   "More generally, our results establish a promising path forward in   
   replacing catalysts made from expensive precious metals with elements   
   that are much less expensive and more abundant," Liu noted.   
      
   This research was published on May 12 in Science and was supported by   
   the DOE Office of Energy Efficiency and Renewable Energy, Hydrogen and   
   Fuel Cell Technologies Office, as well as by Argonne Laboratory Directed   
   Research and Development funding.   
      
   In addition to Liu, Argonne authors are Lina Chong (now at Shanghai Jiao   
   Tong University), Jianguo Wen, Haiping Xu, A. Jeremy Kropf, Wenqian   
   Xu and Xiao-Min Lin. Authors from Berkeley Lab include Guoping Gao,   
   Haixia Li and Ling-Wang Wang. The author from Sandia Labs is Joshua   
   D. Sugar. Contributors Zach Green and Hui Xu are from Giner Inc.   
      
       * RELATED_TOPICS   
             o Matter_&_Energy   
                   # Alternative_Fuels # Fuel_Cells # Energy_and_Resources   
                   # Energy_Technology   
             o Earth_&_Climate   
                   # Energy_and_the_Environment # Renewable_Energy #   
                   Sustainability # Water   
       * RELATED_TERMS   
             o Energy_development o Raney_nickel o Nuclear_fusion o   
             History_of_Earth o Catalysis o Ozone o Hydrogen o Solar_power   
      
   ==========================================================================   
   Story Source: Materials provided by   
   DOE/Argonne_National_Laboratory. Original written by Joseph   
   E. Harmon. Note: Content may be edited for style and length.   
      
      
   ==========================================================================   
   Journal Reference:   
      1. Lina Chong, Guoping Gao, Jianguo Wen, Haixia Li, Haiping Xu,   
      Zach Green,   
         Joshua D. Sugar, A. Jeremy Kropf, Wenqian Xu, Xiao-Min   
         Lin, Hui Xu, Lin- Wang Wang, Di-Jia Liu. La- and Mn-doped   
         cobalt spinel oxygen evolution catalyst for proton exchange   
         membrane electrolysis. Science, 2023; 380 (6645): 609 DOI:   
         10.1126/science.ade1499   
   ==========================================================================   
      
   Link to news story:   
   https://www.sciencedaily.com/releases/2023/05/230530173859.htm   
      
   --- up 1 year, 13 weeks, 1 day, 10 hours, 50 minutes   
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)   
   SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114   
   SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854   
   SEEN-BY: 298/25 305/3 317/3 320/219 396/45   
   PATH: 317/3 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca