Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,364 of 8,931    |
|    ScienceDaily to All    |
|    Flexible nanoelectrodes can provide fine    |
|    30 May 23 22:30:40    |
      MSGID: 1:317/3 6476cd75       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Flexible nanoelectrodes can provide fine-grained brain stimulation        Engineers' device is gentle on neurons, could serve as sensory prosthesis                      Date:        May 30, 2023        Source:        Rice University        Summary:        Engineers have developed ultraflexible implantable nanoelectrodes        that can administer long-term, fine-grained brain stimulation.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Conventional implantable medical devices designed for brain stimulation       are often too rigid and bulky for what is one of the body's softest and       most delicate tissues.              To address the problem, Rice University engineers have developed minimally       invasive, ultraflexible nanoelectrodes that could serve as an implanted       platform for administering long-term, high-resolution stimulation therapy.              According to a study published in Cell Reports, the tiny implantable       devices formed stable, long-lasting and seamless tissue-electrode       interfaces with minimal scarring or degradation in rodents. The devices       delivered electrical pulses that match neuronal signaling patterns and       amplitudes more closely than stimuli from conventional intracortical       electrodes.              The devices' high biocompatibility and precise spatiotemporal stimulus       control could enable the development of new brain stimulation therapies       such as neuronal prostheses for patients with impaired sensory or motor       functions.              "This paper uses imaging, behavioral and histological techniques to       show how these tissue-integrated electrodes improve the efficacy of       stimulation," said Lan Luan, an assistant professor of electrical and       computer engineering and a corresponding author on the study. "Our       electrode delivers tiny electrical pulses to excite neural activity in       a very controllable manner.              "We were able to reduce the current necessary to elicit neuronal       activation by more than an order of magnitude. Pulses can be as subtle       as a couple hundred microseconds in duration and one or two microamps       in amplitude." The new electrode design developed by researchers in the       Rice Neuroengineering Initiative represents a significant improvement       over conventional implantable electrodes used to treat conditions such as       Parkinson's disease, epilepsy and obsessive-compulsive disorder, which can       cause adverse tissue responses and unintended changes in neural activity.              "Conventional electrodes are very invasive," said Chong Xie, an associate       professor of electrical and computer engineering and a corresponding       author of the study. "They recruit thousands or even millions of neurons       at a time.              "Each of those neurons is supposed to have their own tune and coordinate       in a specific pattern. But when you shock them all at the same time,       you're basically disrupting their function. In some cases that works fine       for you and has the desired therapeutic effect. But if, for example,       you want to encode sensory information, you need much greater control       over the stimuli." Xie likened stimulation via conventional electrodes       with the disruptive effect of "blowing an airhorn in everyone's ear or       having a loudspeaker blaring" in a roomful of people.              "We used to have this very big loudspeaker, and now everyone has an       earpiece," he said.              The ability to adjust the frequency, duration and intensity of the       signals could enable the development of novel sensory prosthetic devices.              "Neuron activation is more diffuse if you use a larger current," Luan       said. "We were able to reduce the current and showed that we have a       much more focused activation. This can translate to higher-resolution       stimulation devices." Luan and Xie are core members of the Rice       Neuroengineering Initiative and their labs are also collaborating on the       development of an implantable visual prosthetic device for blind patients.              "Envision one day being able to implant electrode arrays to restore       impaired sensory function: The more focused and deliberate is the       activation of the neurons, the more precise the sensation you're       generating," Luan said.              An earlier iteration of the devices was used to record brain activity.              "We have had a series of publications showing this intimate tissue       integration enabled by our electrode's ultraflexible design really       improves our ability to record brain activity for longer durations and       with better signal-to-noise ratios," said Luan, who has been promoted       to associate professor effective July 1.              Electrical and computer engineering postdoctoral associate Roy Lycke       and graduate student Robin Kim are lead authors on the study.              The National Institute of Neurological Disorders and Stroke (R01NS109361,       U01 NS115588) and Rice internal funds supported the research.               * RELATED_TOPICS        o Mind_&_Brain        # Brain-Computer_Interfaces # Perception # Intelligence        # Neuroscience        o Matter_&_Energy        # Energy_Technology # Medical_Technology # Technology #        Energy_and_Resources        * RELATED_TERMS        o Volcanic_rock o Brain_damage o Deep_brain_stimulation o        Psychosurgery o Technology o Encephalopathy o Cerebellum        o Thalamus              ==========================================================================       Story Source: Materials provided by Rice_University. Original written       by Silvia Cernea Clark.              Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Roy Lycke, Robin Kim, Pavlo Zolotavin, Jon Montes, Yingchu Sun, Aron        Koszeghy, Esra Altun, Brian Noble, Rongkang Yin, Fei He, Nelson        Totah, Chong Xie, Lan Luan. Low-threshold, high-resolution,        chronically stable intracortical microstimulation by        ultraflexible electrodes. Cell Reports, 2023; 42 (6): 112554 DOI:        10.1016/j.celrep.2023.112554       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/05/230530174315.htm              --- up 1 year, 13 weeks, 1 day, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca