Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,295 of 8,931    |
|    ScienceDaily to All    |
|    Quantum matter breakthrough: Tuning dens    |
|    24 May 23 22:30:30    |
      MSGID: 1:317/3 646ee468       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Quantum matter breakthrough: Tuning density waves                Date:        May 24, 2023        Source:        Ecole Polytechnique Fe'de'rale de Lausanne        Summary:        Scientists have found a new way to create a crystalline structure        called a 'density wave' in an atomic gas. The findings can help        us better understand the behavior of quantum matter, one of the        most complex problems in physics.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Scientists at EPFL have found a new way to create a crystalline       structure called a "density wave" in an atomic gas. The findings can       help us better understand the behavior of quantum matter, one of the       most complex problems in physics.              "Cold atomic gases were well known in the past for the ability to       'program' the interactions between atoms," says Professor Jean-Philippe       Brantut at EPFL. "Our experiment doubles this ability!" Working with       the group of Professor Helmut Ritsch at the University of Innsbruck,       they have made a breakthrough that can impact not only quantum research       but quantum-based technologies in the future.              Density waves Scientists have long been interested in understanding how       materials self- organize into complex structures, such as crystals. In the       often-arcane world of quantum physics, this sort of self-organization of       particles is seen in 'density waves', where particles arrange themselves       into a regular, repeating pattern or 'order'; like a group of people       with different colored shirts on standing in a line but in a pattern       where no two people with the same color shirt stand next to each other.              Density waves are observed in a variety of materials, including metals,       insulators, and superconductors. However, studying them has been       difficult, especially when this order (the patterns of particles in the       wave) occurs with other types of organization such as superfluidity --       a property that allows particles to flow without resistance.              It's worth noting that superfluidity is not just a theoretical curiosity;       it is of immense interest for developing materials with unique properties,       such as high-temperature superconductivity, which could lead to more       efficient energy transfer and storage, or for building quantum computers.              Tuning a Fermi gas with light To explore this interplay, Brantut and       his colleagues, the researchers created a "unitary Fermi gas," a thin       gas of lithium atoms cooled to extremely low temperatures, and where       atoms collide with each other very often.              The researchers then placed this gas in an optical cavity, a device used       to confine light in a small space for an extended period of time. Optical       cavities are made of two facing mirrors that reflect incoming light back       and forth between them thousands of times, allowing light particles,       photons, to build up inside the cavity.              In the study, the researchers used the cavity to cause the particles in       the Fermi gas to interact at long distance: a first atom would emit a       photon that bounces onto the mirrors, which is then reabsorbed by second       atom of the gas, regardless how far it is from the first. When enough       photons are emitted and reabsorbed -- easily tuned in the experiment --       the atoms collectively organize into a density wave pattern.              "The combination of atoms colliding directly with each other in the Fermi       gas, while simultaneously exchanging photons over long distance, is a new       type of matter where the interactions are extreme," says Brantut. "We       hope what we will see there will improve our understanding of some of       the most complex materials encountered in physics."        * RELATED_TOPICS        o Matter_&_Energy        # Physics # Quantum_Physics # Optics # Chemistry        o Computers_&_Math        # Quantum_Computers # Spintronics_Research #        Computers_and_Internet # Encryption        * RELATED_TERMS        o Particle_physics o Quantum_mechanics o Electron_configuration        o Wave-particle_duality o Introduction_to_quantum_mechanics        o Quantum_tunnelling o Physics o Breaking_wave              ==========================================================================       Story Source: Materials provided by       Ecole_Polytechnique_Fe'de'rale_de_Lausanne. Original written by Nik       Papageorgiou. Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Victor Helson, Timo Zwettler, Farokh Mivehvar, Elvia Colella,        Kevin Roux,        Hideki Konishi, Helmut Ritsch, Jean-Philippe Brantut. Density-wave        ordering in a unitary Fermi gas with photon-mediated interactions.               Nature, 2023; DOI: 10.1038/s41586-023-06018-3       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/05/230524181906.htm              --- up 1 year, 12 weeks, 2 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca