Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,277 of 8,931    |
|    ScienceDaily to All    |
|    Fine particulate matter catalyzes oxidat    |
|    22 May 23 22:30:20    |
      MSGID: 1:317/3 646c4169       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Fine particulate matter catalyzes oxidative stress in the lungs                Date:        May 22, 2023        Source:        Max Planck Institute for Chemistry        Summary:        Study sheds new light on the adverse health effects of air        pollution: hydrogen peroxide production of fine particles may        not be as important as previously assumed. A new study reveals        that the adverse health effects of fine particulate matter        (PM2.5) are attributable to the conversion of peroxides into        more reactive species such as the hydroxyl radical (OH) rather        than the direct chemical production of hydrogen peroxide (H2O2)        as previously thought.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       In the scientific literature, the total production of reactive oxygen       species (ROS) such as H2O2 is commonly used as proxy for the toxicity       of air pollutants and their ability to induce oxidative stress and       inflammation. The research team led by Thomas Berkemeier from the MPIC in       Mainz found that ROS concentrations in the epithelial lining fluid (ELF)       of the human respiratory tract may be primarily determined by the release       of endogenous H2O2 and the inhalation of ambient gas-phase H2O2, while       the chemical production of H2O2 through inhaled PM2.5 is less important.              "Based on our simulations, we think that the overall concentrations of       these reactive species in the lungs are large anyway, and not directly       dependent on levels of air pollution," says Dr. Thomas Berkemeier, head       of the Chemical Kinetics & Reaction Mechanisms group at the MPIC. They       use a computer model to understand the relevant physical, chemical,       and biological processes, and quantify the health effects of different       types of air pollutants.              "Our new model simulates the chemical reactions that happen in the       respiratory tract. For the first time, we included production, diffusion,       and removal of hydrogen peroxide from cells and the blood stream into       our computer model. This was quite challenging, because it is not so       easy to put these processes in biological tissues into equations,"       explains Thomas Berkemeier.              New research directions "The findings of this study suggest that the       current paradigms for assessing the differential toxicity of individual       PM2.5 components need to be critically reassessed," says Prof. Dr. Ulrich       Po"schl, Head of the Multiphase Chemistry Department at the MPIC. The       study proposes that the chemical production of superoxide and H2O2       in a cell-free assay may not be a suitable metric for assessing the       differential toxicity of individual PM2.5 components, and some acellular       oxidative potential assays may not capture the actual deleterious effects       of PM2.5.              Fine particulates might act through Fenton chemistry However, the       production of hydroxyl radicals (OH) was strongly correlated with Fenton       chemistry of PM2.5 in the model calculations. "The model simulations       suggest that PM2.5 mostly acts by conversion of peroxides into highly       reactive OH radicals. Thus, PM2.5 is not so much the fuel, but rather       the catalyst of the chemical reactions that cause damage to cells and       tissues," says Berkemeier explaining the role of inhaled particles in       the model. Additionally, PM2.5 may stimulate the production of superoxide       from endogenous sources, which further contributes to the adverse health       effects of air pollution.              The study underscores the importance of continued research to better       understand the chemical mechanisms underlying the health effects of       air pollution and to develop effective strategies to mitigate these       effects. The authors believe that this study will contribute significantly       to this important research effort. Their findings are published in the       scientific journal "Environmental Science: Atmospheres." Background       information Air pollution is a major health risk that affects millions       of people worldwide, but the underlying chemical mechanisms are not yet       fully understood. Fine particulate matter (PM2.5) typically contains       chemical components that can trigger oxidation reactions. When inhaled       and deposited in the human respiratory tract, they can induce and sustain       radical reaction cycles that produce reactive oxygen species (ROS) in       the epithelial lining fluid (ELF) that covers the airways and alveoli in       human lungs. Numerous studies have shown that excess concentrations of       ROS like hydrogen peroxide (H2O2) and hydroxyl radicals (OH) can cause       oxidative stress injuring cells and tissues in the respiratory tract.               * RELATED_TOPICS        o Health_&_Medicine        # Lung_Disease # Asthma # Workplace_Health        o Plants_&_Animals        # Developmental_Biology # Mice # Biology        o Earth_&_Climate        # Air_Quality # Pollution # Air_Pollution        * RELATED_TERMS        o Air_pollution o Inversion_(meteorology) o        Automobile_emissions_control o Indoor_air_quality        o Environmental_impact_assessment o MMR_vaccine o        Veterinary_medicine o Health_science              ==========================================================================       Story Source: Materials provided by       Max_Planck_Institute_for_Chemistry. Note: Content may be edited for       style and length.                     ==========================================================================       Journal Reference:        1. Eleni Dovrou, Steven Lelieveld, Ashmi Mishra, Ulrich Po"schl, Thomas        Berkemeier. Influence of ambient and endogenous H2O2 on reactive        oxygen species concentrations and OH radical production in the        respiratory tract. Environmental Science: Atmospheres, 2023; DOI:        10.1039/D2EA00179A       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/05/230522131349.htm              --- up 1 year, 12 weeks, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 291/111 292/854       SEEN-BY: 298/25 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca