Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,260 of 8,931    |
|    ScienceDaily to All    |
|    An electric vehicle battery for all seas    |
|    18 May 23 22:30:22    |
      MSGID: 1:317/3 6466fb6d       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        An electric vehicle battery for all seasons         New electrolyte for lithium-ion batteries performs well in frigid regions       and seasons                Date:        May 18, 2023        Source:        DOE/Argonne National Laboratory        Summary:        Scientists have developed a fluorine-containing electrolyte for        lithium- ion batteries whose charging performance remains high        in frigid regions and seasons. They also determined why it is        so effective.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Many owners of electric vehicles worry about how effective their battery       will be in very cold weather. Now a new battery chemistry may have solved       that problem.              In current lithium-ion batteries, the main problem lies in the liquid       electrolyte. This key battery component transfers charge-carrying       particles called ions between the battery's two electrodes, causing       the battery to charge and discharge. But the liquid begins to freeze at       sub-zero temperatures. This condition severely limits the effectiveness       of charging electric vehicles in cold regions and seasons.              To address that problem, a team of scientists from the U.S. Department       of Energy's (DOE) Argonne and Lawrence Berkeley national laboratories       developed a fluorine-containing electrolyte that performs well even in       sub-zero temperatures.              "Our team not only found an antifreeze electrolyte whose charging       performance does not decline at minus 4 degrees Fahrenheit, but we       also discovered, at the atomic level, what makes it so effective," said       Zhengcheng "John" Zhang, a senior chemist and group leader in Argonne's       Chemical Sciences and Engineering division.              This low-temperature electrolyte shows promise of working for batteries       in electric vehicles, as well as in energy storage for electric grids       and consumer electronics like computers and phones.              In today's lithium-ion batteries, the electrolyte is a mixture of a widely       available salt (lithium hexafluorophosphate) and carbonate solvents such       as ethylene carbonate. The solvents dissolve the salt to form a liquid.              When a battery is charged, the liquid electrolyte shuttles lithium       ions from the cathode (a lithium-containing oxide) to the anode       (graphite). These ions migrate out of the cathode, then pass through the       electrolyte on the way into the anode. While being transported through       the electrolyte, they sit at the center of clusters of four or five       solvent molecules.              During the initial few charges, these clusters strike the anode surface       and form a protective layer called the solid-electrolyte interphase. Once       formed, this layer acts like a filter. It allows only the lithium ions to       pass through the layer while blocking the solvent molecules. In this way,       the anode is able to store lithium atoms in the structure of the graphite       on charge. Upon discharge, electrochemical reactions release electrons       from the lithium that generate electricity that can power vehicles.              The problem is that in cold temperatures, the electrolyte with carbonate       solvents begins to freeze. As a result, it loses the ability to transport       lithium ions into the anode on charge. This is because the lithium ions       are so tightly bound within the solvent clusters. Hence, these ions       require much higher energy to evacuate their clusters and penetrate the       interface layer than at room temperature. For that reason, scientists       have been searching for a better solvent.              The team investigated several fluorine-containing solvents. They were       able to identify the composition that had the lowest energy barrier for       releasing lithium ions from the clusters at sub-zero temperature. They       also determined at the atomic scale why that particular composition worked       so well. It depended on the position of the fluorine atoms within each       solvent molecule and their number.              In testing with laboratory cells, the team's fluorinated electrolyte       retained stable energy storage capacity for 400 charge-discharge cycles       at minus 4 F.              Even at that sub-zero temperature, the capacity was equivalent to       that of a cell with a conventional carbonate-based electrolyte at room       temperature.              "Our research thus demonstrated how to tailor the atomic structure       of electrolyte solvents to design new electrolytes for sub-zero       temperatures," Zhang said.              The antifreeze electrolyte has a bonus property. It is much safer than       the carbonate-based electrolytes that are currently used, since it will       not catch fire.              "We are patenting our low-temperature and safer electrolyte and are now       searching for an industrial partner to adapt it to one of their designs       for lithium-ion batteries," Zhang said.              This research appears in Advanced Energy Materials. In addition to John       Zhang, Argonne authors are Dong-Joo Yoo, Qian Liu and Minkyu Kim. Berkeley       Lab authors are Orion Cohen and Kristin Persson.              This work was funded by the DOE Office of Energy Efficiency and Renewable       Energy, Vehicle Technologies Office.               * RELATED_TOPICS        o Matter_&_Energy        # Batteries # Fuel_Cells # Energy_and_Resources #        Energy_Technology # Electricity # Alternative_Fuels #        Chemistry # Nature_of_Water        * RELATED_TERMS        o Lithium o Battery_(electricity) o Fluorine o Acid o Wood o        Mass_spectrometry o Sports o Chelation              ==========================================================================       Story Source: Materials provided by       DOE/Argonne_National_Laboratory. Original written by Joseph       E. Harmon. Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Dong‐Joo Yoo, Qian Liu, Orion Cohen, Minkyu Kim, Kristin A.               Persson, Zhengcheng Zhang. Rational Design of Fluorinated        Electrolytes for Low Temperature Lithium‐Ion        Batteries. Advanced Energy Materials, 2023; DOI:        10.1002/aenm.202204182       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/05/230518120853.htm              --- up 1 year, 11 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca