Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,258 of 8,931    |
|    ScienceDaily to All    |
|    Novel 3D printing method a 'game changer    |
|    18 May 23 22:30:22    |
      MSGID: 1:317/3 6466fb67       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Novel 3D printing method a 'game changer' for discovery, manufacturing       of new materials                Date:        May 18, 2023        Source:        University of Notre Dame        Summary:        Researchers have created a novel 3D printing method that produces        materials in ways that conventional manufacturing can't match.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       The time-honored Edisonian trial-and-error process of discovery is slow       and labor-intensive. This hampers the development of urgently needed       new technologies for clean energy and environmental sustainability,       as well as for electronics and biomedical devices.              "It usually takes 10 to 20 years to discover a new material," said       Yanliang Zhang, associate professor of aerospace and mechanical       engineering at the University of Notre Dame.              "I thought if we could shorten that time to less than a year -- or       even a few months -- it would be a game changer for the discovery       and manufacturing of new materials." Now Zhang has done just that,       creating a novel 3D printing method that produces materials in ways that       conventional manufacturing can't match. The new process mixes multiple       aerosolized nanomaterial inks in a single printing nozzle, varying the       ink mixing ratio on the fly during the printing process. This method       -- called high-throughput combinatorial printing (HTCP) -- controls       both the printed materials' 3D architectures and local compositions       and produces materials with gradient compositions and properties at       microscale spatial resolution.              His research was just published in Nature.              The aerosol-based HTCP is extremely versatile and applicable to a broad       range of metals, semiconductors and dielectrics, as well as polymers       and biomaterials. It generates combinational materials that function as       "libraries," each containing thousands of unique compositions.              Combining combinational materials printing and high-throughput       characterization can significantly accelerate materials discovery, Zhang       said. His team has already used this approach to identify a semiconductor       material with superior thermoelectric properties, a promising discovery       for energy harvesting and cooling applications.              In addition to speeding up discovery, HTCP produces functionally graded       materials that gradually transition from stiff to soft. This makes       them particularly useful in biomedical applications that need to bridge       between soft body tissues and stiff wearable and implantable devices.              In the next phase of research, Zhang and the students in his Advanced       Manufacturing and Energy Lab plan to apply machine learning and artificial       intelligence-guided strategies to the data-rich nature of HTCP in order       to accelerate the discovery and development of a broad range of materials.              "In the future, I hope to develop an autonomous and self-driving process       for materials discovery and device manufacturing, so students in the       lab can be free to focus on high-level thinking," Zhang said.               * RELATED_TOPICS        o Matter_&_Energy        # Materials_Science # Civil_Engineering #        Engineering_and_Construction # 3-D_Printing # Electronics        # Weapons_Technology # Nanotechnology # Physics        * RELATED_TERMS        o Knot_theory o Materials_science o Pyroelectricity o        Radiocarbon_dating o Carbon-14 o Resonance_(chemistry) o        Metallurgy o Tissue_engineering              ==========================================================================       Story Source: Materials provided by University_of_Notre_Dame. Original       written by Karla Cruise. Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Minxiang Zeng, Yipu Du, Qiang Jiang, Nicholas Kempf, Chen Wei,        Miles V.               Bimrose, A. N. M. Tanvir, Hengrui Xu, Jiahao Chen, Dylan        J. Kirsch, Joshua Martin, Brian C. Wyatt, Tatsunori Hayashi,        Mortaza Saeidi-Javash, Hirotaka Sakaue, Babak Anasori, Lihua Jin,        Michael D. McMurtrey, Yanliang Zhang. High-throughput printing of        combinatorial materials from aerosols.               Nature, 2023; 617 (7960): 292 DOI: 10.1038/s41586-023-05898-9       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/05/230518120903.htm              --- up 1 year, 11 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca