Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,237 of 8,931    |
|    ScienceDaily to All    |
|    With formic acid towards CO2 neutrality    |
|    15 May 23 22:30:18    |
      MSGID: 1:317/3 646306eb       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        With formic acid towards CO2 neutrality         Researchers develop a new method for the sustainable use of carbon       dioxide                Date:        May 15, 2023        Source:        Max-Planck-Gesellschaft        Summary:        Researchers develop a new method for the sustainable use of        carbon dioxide.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       New synthetic metabolic pathways for fixation of carbon dioxide could       not only help to reduce the carbon dioxide content of the atmosphere,       but also replace conventional chemical manufacturing processes for       pharmaceuticals and active ingredients with carbon-neutral, biological       processes. A new study demonstrates a process that can turn carbon dioxide       into a valuable material for the biochemical industry via formic acid.              In view of rising greenhouse gas emissions, carbon capture, the       sequestration of carbon dioxide from large emission sources, is an urgent       issue. In nature, carbon dioxide assimilation has been taking place for       millions of years, but its capacity is far from sufficient to compensate       human-made emissions.              Researchers led by Tobias Erb at the Max Planck Institute for Terrestrial       Microbiology are using nature's toolbox to develop new ways of carbon       dioxide fixation. They have now succeeded in developing an artificial       metabolic pathway that produces the highly reactive formaldehyde       from formic acid, a possible intermediate product of artificial       photosynthesis. Formaldehyde could be fed directly into several metabolic       pathways to form other valuable substances without any toxic effects. As       in the natural process, two primary components are required: Energy and       carbon. The former can be provided not only by direct sunlight but also       by electricity -- for example from solar modules.              Formic acid is a C1 building block Within the added-value chain, the       carbon source is variable. carbon dioxide is not the only option here,       all monocarbons (C1 building blocks) come into question: carbon monoxide,       formic acid, formaldehyde, methanol and methane.              However, almost all of these substances are highly toxic -- either       to living organisms (carbon monoxide, formaldehyde, methanol) or       to the planet (methane as a greenhouse gas). Only formic acid, when       neutralised to its base formate, is tolerated by many microorganisms in       high concentrations.              "Formic acid is a very promising carbon source," emphasizes Maren       Nattermann, first author of the study. "But converting it to       formaldehyde in the test tube is quite energy-intensive." This is       because the salt of formic acid, formate, cannot be converted easily       into formaldehyde. "There's a serious chemical barrier between the       two molecules that we have to bridge with biochemical energy -- ATP --       before we can perform the actual reaction." The researcher's goal was       to find a more economical way. After all, the less energy it takes to       feed carbon into metabolism, the more energy remains to drive growth or       production. But such a path does not exist in nature. "It takes some       creativity to discover so-called promiscuous enzymes with multiple       functions," says Tobias Erb. "However, the discovery of candidate       enzymes is only the beginning. We're talking about reactions that you can       count along with since they're so slow -- in some cases, less than one       reaction per second per enzyme. Natural reactions can happen a thousand       times faster." This is where synthetic biochemistry comes in, says Maren       Nattermann: "If you know an enzyme's structure and mechanism, you know       where to intervene. Here, we benefit significantly from the preliminary       work of our colleagues in basic research." High-throughput technology       speeds up enzyme optimization The optimization of the enzymes comprised       of several approaches: building blocks were specifically exchanged, and       random mutations were generated and selected for capability. "Formate       and formaldehyde are both wonderfully suited because they penetrate cell       walls. We can put formate into the culture medium of cells that produce       our enzymes, and after a few hours convert the formaldehyde produced       into a non-toxic yellow dye," explains Maren Nattermann.              The result would not have been possible in such a short time without       the use of high-throughput methods. To achieve this, the researchers       cooperated with their industrial partner Festo, based in Esslingen,       Germany. "After about 4000 variants, we achieved a fourfold improvement       in production," says Maren Nattermann. "We have thus created the basis       for the model mikrobe Escherichia coli, the microbial workhorse of       biotechnology, to grow on formic acid. For now, however, our cells can       only produce formaldehyde, not convert it further." With collaboration       partner Sebastian Wenk at the Max Planck Institute of Molecular Plant       Physiology, the researchers are currently developing a strain that       can take up the intermediates and introduce them into the central       metabolism. In parallel, the team is conducting research with a working       group at the Max Planck Institute for Chemical Energy Conversion headed       by Walter Leitner on the electrochemical conversion of carbon dioxide       to formic acid. The long-term goal is an "all-in-one platform" -- from       carbon dioxide via an electrobiochemical process to products like insulin       or biodiesel.               * RELATED_TOPICS        o Matter_&_Energy        # Organic_Chemistry # Biochemistry # Graphene #        Electronics        o Earth_&_Climate        # Air_Quality # Global_Warming # Forest # Air_Pollution        * RELATED_TERMS        o Carbon_dioxide o Forest o Carbon_dioxide_sink        o Carbon_monoxide o Fullerene o Fossil_fuel o        Sustainable_agriculture o Carbon-14              ==========================================================================       Story Source: Materials provided by Max-Planck-Gesellschaft. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Maren Nattermann, Sebastian Wenk, Pascal Pfister, Hai He, Seung        Hwan Lee,        Witold Szymanski, Nils Guntermann, Fayin Zhu, Lennart Nickel,        Charlotte Wallner, Jan Zarzycki, Nicole Paczia, Nina Gaissert,        Giancarlo Francio`, Walter Leitner, Ramon Gonzalez, Tobias        J. Erb. Engineering a new-to- nature cascade for phosphate-dependent        formate to formaldehyde conversion in vitro and in vivo. Nature        Communications, 2023; 14 (1) DOI: 10.1038/ s41467-023-38072-w       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/05/230515131949.htm              --- up 1 year, 11 weeks, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca