home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   EARTH      Uhh, that 3rd rock from the sun?      8,931 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 8,237 of 8,931   
   ScienceDaily to All   
   With formic acid towards CO2 neutrality   
   15 May 23 22:30:18   
   
   MSGID: 1:317/3 646306eb   
   PID: hpt/lnx 1.9.0-cur 2019-01-08   
   TID: hpt/lnx 1.9.0-cur 2019-01-08   
    With formic acid towards CO2 neutrality    
    Researchers develop a new method for the sustainable use of carbon   
   dioxide    
      
     Date:   
         May 15, 2023   
     Source:   
         Max-Planck-Gesellschaft   
     Summary:   
         Researchers develop a new method for the sustainable use of   
         carbon dioxide.   
      
      
         Facebook Twitter Pinterest LinkedIN Email   
      
   ==========================================================================   
   FULL STORY   
   ==========================================================================   
   New synthetic metabolic pathways for fixation of carbon dioxide could   
   not only help to reduce the carbon dioxide content of the atmosphere,   
   but also replace conventional chemical manufacturing processes for   
   pharmaceuticals and active ingredients with carbon-neutral, biological   
   processes. A new study demonstrates a process that can turn carbon dioxide   
   into a valuable material for the biochemical industry via formic acid.   
      
   In view of rising greenhouse gas emissions, carbon capture, the   
   sequestration of carbon dioxide from large emission sources, is an urgent   
   issue. In nature, carbon dioxide assimilation has been taking place for   
   millions of years, but its capacity is far from sufficient to compensate   
   human-made emissions.   
      
   Researchers led by Tobias Erb at the Max Planck Institute for Terrestrial   
   Microbiology are using nature's toolbox to develop new ways of carbon   
   dioxide fixation. They have now succeeded in developing an artificial   
   metabolic pathway that produces the highly reactive formaldehyde   
   from formic acid, a possible intermediate product of artificial   
   photosynthesis. Formaldehyde could be fed directly into several metabolic   
   pathways to form other valuable substances without any toxic effects. As   
   in the natural process, two primary components are required: Energy and   
   carbon. The former can be provided not only by direct sunlight but also   
   by electricity -- for example from solar modules.   
      
   Formic acid is a C1 building block Within the added-value chain, the   
   carbon source is variable. carbon dioxide is not the only option here,   
   all monocarbons (C1 building blocks) come into question: carbon monoxide,   
   formic acid, formaldehyde, methanol and methane.   
      
   However, almost all of these substances are highly toxic -- either   
   to living organisms (carbon monoxide, formaldehyde, methanol) or   
   to the planet (methane as a greenhouse gas). Only formic acid, when   
   neutralised to its base formate, is tolerated by many microorganisms in   
   high concentrations.   
      
   "Formic acid is a very promising carbon source," emphasizes Maren   
   Nattermann, first author of the study. "But converting it to   
   formaldehyde in the test tube is quite energy-intensive." This is   
   because the salt of formic acid, formate, cannot be converted easily   
   into formaldehyde. "There's a serious chemical barrier between the   
   two molecules that we have to bridge with biochemical energy -- ATP --   
   before we can perform the actual reaction."  The researcher's goal was   
   to find a more economical way. After all, the less energy it takes to   
   feed carbon into metabolism, the more energy remains to drive growth or   
   production. But such a path does not exist in nature. "It takes some   
   creativity to discover so-called promiscuous enzymes with multiple   
   functions," says Tobias Erb. "However, the discovery of candidate   
   enzymes is only the beginning. We're talking about reactions that you can   
   count along with since they're so slow -- in some cases, less than one   
   reaction per second per enzyme. Natural reactions can happen a thousand   
   times faster." This is where synthetic biochemistry comes in, says Maren   
   Nattermann: "If you know an enzyme's structure and mechanism, you know   
   where to intervene. Here, we benefit significantly from the preliminary   
   work of our colleagues in basic research."  High-throughput technology   
   speeds up enzyme optimization The optimization of the enzymes comprised   
   of several approaches: building blocks were specifically exchanged, and   
   random mutations were generated and selected for capability. "Formate   
   and formaldehyde are both wonderfully suited because they penetrate cell   
   walls. We can put formate into the culture medium of cells that produce   
   our enzymes, and after a few hours convert the formaldehyde produced   
   into a non-toxic yellow dye," explains Maren Nattermann.   
      
   The result would not have been possible in such a short time without   
   the use of high-throughput methods. To achieve this, the researchers   
   cooperated with their industrial partner Festo, based in Esslingen,   
   Germany. "After about 4000 variants, we achieved a fourfold improvement   
   in production," says Maren Nattermann. "We have thus created the basis   
   for the model mikrobe Escherichia coli, the microbial workhorse of   
   biotechnology, to grow on formic acid. For now, however, our cells can   
   only produce formaldehyde, not convert it further."  With collaboration   
   partner Sebastian Wenk at the Max Planck Institute of Molecular Plant   
   Physiology, the researchers are currently developing a strain that   
   can take up the intermediates and introduce them into the central   
   metabolism. In parallel, the team is conducting research with a working   
   group at the Max Planck Institute for Chemical Energy Conversion headed   
   by Walter Leitner on the electrochemical conversion of carbon dioxide   
   to formic acid. The long-term goal is an "all-in-one platform" -- from   
   carbon dioxide via an electrobiochemical process to products like insulin   
   or biodiesel.   
      
       * RELATED_TOPICS   
             o Matter_&_Energy   
                   # Organic_Chemistry # Biochemistry # Graphene #   
                   Electronics   
             o Earth_&_Climate   
                   # Air_Quality # Global_Warming # Forest # Air_Pollution   
       * RELATED_TERMS   
             o Carbon_dioxide o Forest o Carbon_dioxide_sink   
             o Carbon_monoxide o Fullerene o Fossil_fuel o   
             Sustainable_agriculture o Carbon-14   
      
   ==========================================================================   
   Story Source: Materials provided by Max-Planck-Gesellschaft. Note:   
   Content may be edited for style and length.   
      
      
   ==========================================================================   
   Journal Reference:   
      1. Maren Nattermann, Sebastian Wenk, Pascal Pfister, Hai He, Seung   
      Hwan Lee,   
         Witold Szymanski, Nils Guntermann, Fayin Zhu, Lennart Nickel,   
         Charlotte Wallner, Jan Zarzycki, Nicole Paczia, Nina Gaissert,   
         Giancarlo Francio`, Walter Leitner, Ramon Gonzalez, Tobias   
         J. Erb. Engineering a new-to- nature cascade for phosphate-dependent   
         formate to formaldehyde conversion in vitro and in vivo. Nature   
         Communications, 2023; 14 (1) DOI: 10.1038/ s41467-023-38072-w   
   ==========================================================================   
      
   Link to news story:   
   https://www.sciencedaily.com/releases/2023/05/230515131949.htm   
      
   --- up 1 year, 11 weeks, 10 hours, 50 minutes   
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)   
   SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114   
   SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 292/854 298/25   
   SEEN-BY: 305/3 317/3 320/219 396/45   
   PATH: 317/3 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca