Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,207 of 8,931    |
|    ScienceDaily to All    |
|    Scintillating science: Researchers impro    |
|    08 May 23 22:30:16    |
      MSGID: 1:317/3 6459cc6e       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Scintillating science: Researchers improve materials for radiation       detection and imaging technology                Date:        May 8, 2023        Source:        Florida State University        Summary:        A team of researchers has improved a new generation of        organic-inorganic hybrid materials that can improve image quality        in X-ray machines, CT scans and other radiation detection and        imaging technologies.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       A team of Florida State University researchers has further developed a       new generation of organic-inorganic hybrid materials that can improve       image quality in X-ray machines, CT scans and other radiation detection       and imaging technologies.              Professor Biwu Ma from the Department of Chemistry and Biochemistry and       his colleagues have developed a new class of materials that can act as       highly efficient scintillators, which emit light after being exposed to       other forms of high energy radiations, such as X-rays.              The team's most recent study, published in Advanced Materials,       is an improvement upon their previous research to develop better       scintillators. The new design concept produces materials that can emit       light within nanoseconds, orders of magnitude faster than previously       developed materials, allowing for better imaging.              "Reducing the radioluminescence decay lifetime of scintillators to       nanoseconds is an important breakthrough," Ma said. "Using a hybrid       material made up of both organic and inorganic components means       each component can be used for the part of the process where it       is most effective." Scintillators are used in all sorts of imaging       applications. Health care settings, security X-rays, radiation detectors       and other technologies use them and would benefit from better image       quality.              The new generation of organic metal halide hybrid scintillators developed       by Ma's team has numerous improvements over existing ones. In addition       to significantly better radioluminescence response, the manufacturing       process is simpler than the process used for other scintillators, and       it uses abundant and cheap materials.              Think of a scintillator as a sort of translator between two types of       energy, taking a form of high energy radiation, such as an X-ray, and       converting it into visible light. Less radiation passes through denser       parts of an object, and that difference can be used to distinguish       higher-density objects, such as bones or metal, from lower-density ones,       such as soft tissue. The radiation that passes through an object then       interacts with the scintillator, which generates visible light that is       detected by a sensor to make an image.              Today's scintillators use mainly inorganic materials to transform high       energy radiation into visible light for producing images. These materials       are rigid, use rare Earth elements, and require energy-consuming,       high-temperature manufacturing processes.              Ma and his team have been working on zero-dimensional organic metal       halide hybrids, with which they have performed pioneering research       since 2018. These organic-inorganic hybrids are made of small groups of       negatively charged inorganic components, called metal halide clusters,       and positively charged organic molecules. They're "zero-dimensional" at       the molecular level because the metal halide clusters are fully isolated       and surrounded by organic molecules.              In the first version of scintillators based on this material, the metal       halides absorb high energy radiation and emit visible light. In this       latest iteration, metal halide components and organic molecules work       together. The metal halides absorb high energy radiation and transfer       energy to the organic components, which emit visible light.              Light emissions from organic molecules take place on the scale of       nanoseconds, much faster than the microseconds or milliseconds required       for metal halides to emit light.              "The faster the decay of radioluminescence, the more precise we can       measure the timing of photon emissions," Ma said. "That leads to higher       resolution and contrast in images." With the help of the FSU Office       of Commercialization, Ma and his team have filed patents on organic       metal halide hybrid scintillators. The office's GAP Commercialization       Investment Program provided funding to develop the technology for       potential partnerships with private companies, which would make the       scintillators available on a wider scale.              "This is a continuation of our push for better materials over the years,       from 2018, when we first discovered this class of materials, to 2020,       when we used them for scintillation for the first time," Ma said. "This       is another major breakthrough." This study was supported by the National       Science Foundation and Florida State University.              This paper's first author was FSU graduate student Tunde Blessed       Shonde. Other co-authors were Maya Chaaban, He Liu, Oluwadara Joshua       Olasupo, Azza Ben- Akacha, Fabiola G. Gonzalez, Kerri Julevich, Xinsong       Lin, J. S. Raaj Vellore Winfred, all from FSU, and Luis M. Stand and       Mariya Zhuravleva from the University of Tennessee, Knoxville.               * RELATED_TOPICS        o Matter_&_Energy        # Chemistry # Optics # Materials_Science #        Organic_Chemistry # Graphene # Inorganic_Chemistry #        Medical_Technology # Detectors        * RELATED_TERMS        o CAT_scan o X-ray o Technology o Chemistry o        Electron_microscope o Solar_power o Positron_emission_tomography        o Machine              ==========================================================================       Story Source: Materials provided by Florida_State_University. Original       written by Bill Wellock. Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Tunde Blessed Shonde, Maya Chaaban, He Liu, Oluwadara Joshua        Olasupo,        Azza Ben‐Akacha, Fabiola G. Gonzalez, Kerri Julevich, Xinsong        Lin, J. S. Raaj Vellore Winfred, Luis M. Stand, Mariya Zhuravleva,        Biwu Ma.               Molecular Sensitization Enabled High Performance Organic Metal        Halide Hybrid Scintillator. Advanced Materials, 2023; DOI: 10.1002/        adma.202301612       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/05/230508150929.htm              --- up 1 year, 10 weeks, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca