Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,189 of 8,931    |
|    ScienceDaily to All    |
|    Scientists capture elusive chemical reac    |
|    05 May 23 22:30:24    |
      MSGID: 1:317/3 6455d7f8       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Scientists capture elusive chemical reaction using enhanced X-ray method                      Date:        May 5, 2023        Source:        DOE/SLAC National Accelerator Laboratory        Summary:        Researchers have captured one of the fastest movements of a molecule        called ferricyanide for the first time by combining two ultrafast        X-ray spectroscopy techniques. They think their approach could help        map more complex chemical reactions like oxygen transportation in        blood cells or hydrogen production using artificial photosynthesis.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Researchers at SLAC National Accelerator Laboratory captured one of       the fastest movements of a molecule called ferricyanide for the first       time by combining two ultrafast X-ray spectroscopy techniques. They       think their approach could help map more complex chemical reactions       like oxygen transportation in blood cells or hydrogen production using       artificial photosynthesis.              The research team from SLAC, Stanford and other institutions started       with what is now a fairly standard technique: They zapped a mixture       of ferricyanide and water with an ultraviolet laser and bright X-rays       generated by the Linac Coherent Light Source (LCLS) X-ray free-electron       laser. The ultraviolet light kicked the molecule into an excited state       while the X-rays probed the sample's atoms, revealing features of       ferricyanide's atomic and electronic structure and motion.              What was different this time is how the researchers extracted       information from the X-ray data. Instead of studying only one       spectroscopic region, known as the Kb main emission line, the team       captured and analyzed a second emission region, called valence-to-core,       which has been significantly more challenging to measure on ultrafast       timescales. Combining information from both regions enabled the team       to obtain a detailed picture of the ferricyanide molecule as it evolved       into a key transitional state.              The team showed that ferricyanide enters an intermediate, excited state       for about 0.3 picoseconds -- or less than a trillionth of a second --       after being hit with a UV laser. The valence-to-core readings then       revealed that following this short-lived, excited period, ferricyanide       loses one of its molecular cyanide "arms," called a ligand. Ferricyanide       then either fills this missing joint with the same carbon-based ligand       or, less likely, a water molecule.              "This ligand exchange is a basic chemical reaction that was thought to       occur in ferricyanide, but there was no direct experimental evidence of       the individual steps in this process," SLAC scientist and first author       Marco Reinhard said.              "With only a Kb main emission line analysis approach, we wouldn't really       be able to see what the molecule looks like when it is changing from       one state to the next; we'd only obtain a clear picture of the beginning       of the process." "You want to be able to replicate what nature does to       improve technology and increase our foundational scientific knowledge,"       SLAC senior scientist Dimosthenis Sokaras said. "And in order to better       replicate natural processes, you have to know all of the steps, from the       most obvious to those that happen in the dark, so to speak." In the       future, the research team wants to study more complex molecules, such       as hemeproteins, which transport and store oxygen in red blood cells --       but which can be tricky to study because scientists do not understand       all the intermediate steps of their reactions, Sokaras said.              The research team refined their X-ray spectroscopy technique at SLAC's       Stanford Synchrotron Radiation Lightsource (SSRL) and the LCLS over       many years, and then combined all this expertise at the LCLS's X-ray       Correlation Spectroscopy (XCS) instrument to capture the molecular       structural changes of ferricyanide. The team published their results       today in Nature Communications.              "We leveraged both SSRL and LCLS to complete the experiment. We couldn't       have finished developing our method without access to both facilities       and our longstanding collaboration together," said Roberto Alonso-Mori,       SLAC lead scientist. "For years, we have been developing these methods       at these two X-ray sources, and now we plan to use them to uncover       previously inaccessible secrets of chemical reactions."        * RELATED_TOPICS        o Matter_&_Energy        # Detectors # Optics # Organic_Chemistry # Chemistry #        Inorganic_Chemistry # Physics # Electronics # Biochemistry        * RELATED_TERMS        o Autocatalysis o Spectroscopy o Positron_emission_tomography        o Oxygen o Carbon_dioxide o Carbohydrate o Combustion o        Tissue_engineering              ==========================================================================       Story Source: Materials provided by       DOE/SLAC_National_Accelerator_Laboratory. Original written by David       Krause. Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Marco Reinhard, Alessandro Gallo, Meiyuan Guo, Angel        T. Garcia-Esparza,        Elisa Biasin, Muhammad Qureshi, Alexander Britz, Kathryn Ledbetter,        Kristjan Kunnus, Clemens Weninger, Tim van Driel, Joseph Robinson,        James M. Glownia, Kelly J. Gaffney, Thomas Kroll, Tsu-Chien        Weng, Roberto Alonso-Mori, Dimosthenis Sokaras. Ferricyanide        photo-aquation pathway revealed by combined femtosecond Kb main        line and valence-to-core x-ray emission spectroscopy. Nature        Communications, 2023; 14 (1) DOI: 10.1038/ s41467-023-37922-x       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/05/230505141356.htm              --- up 1 year, 9 weeks, 4 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca