Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,184 of 8,931    |
|    ScienceDaily to All    |
|    Smart surgical implant coatings provide     |
|    05 May 23 22:30:24    |
      MSGID: 1:317/3 6455d7e9       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Smart surgical implant coatings provide early failure warning while       preventing infection                Date:        May 5, 2023        Source:        University of Illinois at Urbana-Champaign, News Bureau        Summary:        Newly developed 'smart' coatings for surgical orthopedic implants        can monitor strain on the devices to provide early warning        of implant failures while killing infection-causing bacteria,        researchers report.               The coatings integrate flexible sensors with a nanostructured        antibacterial surface inspired by the wings of dragonflies and        cicadas.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Newly developed "smart" coatings for surgical orthopedic implants       can monitor strain on the devices to provide early warning of implant       failures while killing infection-causing bacteria, University of Illinois       Urbana-Champaign researchers report. The coatings integrate flexible       sensors with a nanostructured antibacterial surface inspired by the       wings of dragonflies and cicadas.              In a new study in the journal Science Advances, a multidisciplinary team       of researchers found the coatings prevented infection in live mice and       mapped strain in commercial implants applied to sheep spines to warn of       various implant or healing failures.              "This is a combination of bio-inspired nanomaterial design with flexible       electronics to battle a complicated, long-term biomedical problem,"       said study leader Qing Cao, a U. of I. professor of materials science       and engineering.              Both infection and device failure are major problems with orthopedic       implants, each affecting up to 10% of patients, Cao said. Several       approaches to fighting infection have been attempted, but all have severe       limitations, he said: Biofilms can still form on water-repelling surfaces,       and coatings laden with antibiotic chemicals or drugs run out in a span       of months and have toxic effects on the surrounding tissue with little       efficacy against drug-resistant strains of bacterial pathogens.              Taking inspiration from the naturally antibacterial wings of cicadas       and dragonflies, the Illinois team created a thin foil patterned with       nanoscale pillars like those found on the insects' wings. When a bacterial       cell attempts to bind to the foil, the pillars puncture the cell wall,       killing it.              "Using a mechanical approach to killing bacteria allowed us to bypass       a lot of the problems with chemical approaches, while still giving us       the flexibility needed to apply the coating to implant surfaces," said       pathobiology professor Gee Lau, a coauthor of the study.              On the back side of the nanostructured foil, where it contacts the implant       device, the researchers integrated arrays of highly sensitive, flexible       electronic sensors to monitor strain. This could help physicians watch       the healing progress of individual patients, guide their rehabilitation       to shorten the recovery time and minimize risks, and repair or replace       devices before they hit the point of failure, the researchers said.              The engineering group then teamed up with veterinary clinical medicine       professor Annette McCoy to test their prototype devices. They implanted       the foils in live mice and monitored them for any sign of infection,       even when bacteria were introduced. They also applied the coatings       to commercially available spinal implants and monitored strain to       the implants in sheep spines under normal load for device failure       diagnosis. The coatings performed both functions well.              The prototype electronics required wires, but the researchers next plan       to develop wireless power and data communications interfaces for their       coatings, a crucial step for clinical application, Cao said. They also       are working to develop large-scale production of the nanopillar-textured       bacteria-killing foil.              "These types of antibacterial coatings have a lot of potential       applications, and since ours uses a mechanical mechanism, it has       potential for places where chemicals or heavy metal ions -- as are used in       commercial antimicrobial coatings now -- would be detrimental," Cao said.              The National Science Foundation and the U.S. Congressionally Directed       Medical Research Programs supported this work.               * RELATED_TOPICS        o Health_&_Medicine        # Medical_Devices # Infectious_Diseases #        Wounds_and_Healing # Disability        o Plants_&_Animals        # Bacteria # Mice # Microbes_and_More #        Biotechnology_and_Bioengineering        * RELATED_TERMS        o Salmonella_infection o Bacteria o Earthquake o        Malignant_melanoma o Natural_killer_cell o Robotic_surgery o        Tapeworm o Global_spread_of_H5N1_in_2006              ==========================================================================       Story Source: Materials provided by       University_of_Illinois_at_Urbana-Champaign,_News_Bureau.              Original written by Liz Ahlberg Touchstone. Note: Content may be edited       for style and length.                     ==========================================================================       Journal Reference:        1. Yi Zhang, Jinsong Cui, Kuan-Yu Chen, Shanny Hsuan Kuo, Jaishree        Sharma,        Rimsha Bhatta, Zheng Liu, Austin Ellis-Mohr, Fufei An, Jiahui Li,        Qian Chen, Kari D. Foss, Hua Wang, Yumeng Li, Annette M. McCoy,        Gee W. Lau, Qing Cao. A smart coating with integrated physical        antimicrobial and strain-mapping functionalities for orthopedic        implants. Science Advances, 2023; 9 (18) DOI: 10.1126/sciadv.adg7397       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/05/230505165444.htm              --- up 1 year, 9 weeks, 4 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca