Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,175 of 8,931    |
|    ScienceDaily to All    |
|    receptors    |
|    04 May 23 22:31:56    |
      MSGID: 1:317/3 645486cd       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08       receptors         First time that individual beta-arrestin molecules are directly observed       as they control receptor-mediated signals in living cells using advanced       microscopy                Date:        May 4, 2023        Source:        University of Birmingham        Summary:        Proteins that act like air traffic controllers, managing the flow        of signals in and out of human cells, have been observed for the        first time with unprecedented detail using advanced microscopy        techniques. New findings could inform the development of better        drugs for pain relief, diabetes or heart failure.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Proteins that act like air traffic controllers, managing the flow of       signals in and out of human cells, have been observed for the first time       with unprecedented detail using advanced microscopy techniques.              Described in new research published today in Cell, an international team       of researchers led by Professor Davide Calebiro from the University of       Birmingham has seen how beta-arrestin, a protein involved in managing       a common and important group of cellular gateways, known as receptors,       works.              Beta-arrestin is involved in controlling the activity of G protein-coupled       receptors (GPCRs) which are the largest group of receptors in the human       body and mediate the effects of many hormones and neurotransmitters. As a       result, GPCRs are major targets for drug development and between 30-40%       of all current therapeutics are against these receptors. Once the       receptors are activated, beta-arrestins dampen the signal in a process       called desensitisation but can also mediate signals of their own.              The new study published in Cell has unexpectedly revealed that       beta-arrestins attach themselves to the outer cell membrane waiting       for hormones or neurotransmitters to land on receptors. Surprisingly,       the interactions between beta-arrestins and active receptors are much       more dynamic than previously thought, allowing for a far better control       of receptor-mediated signals.              Davide Calebiro, Professor of Molecular Endocrinology in the Institute       of Metabolism and Systems Research at the University of Birmingham and       Co-Director of the Centre of Membrane Proteins and Receptors (COMPARE)       of the Universities of Birmingham and Nottingham said: "In our study,       we used innovative single-molecule microscopy and computational methods       developed in our lab to observe for the first time how individual beta-       arrestin molecules work in our cells with unprecedented detail.              "We have revealed a new mechanism that explains how beta-arrestins       can efficiently interact with receptors on the plasma membrane of a       cell. Acting like air traffic controllers, these proteins sense when       receptors are activated by a hormone or a neurotransmitter to modulate       the flow of signals within our cells. By doing so, they play a key role       in signal desensitisation, a fundamental biological process that allows       our organism to adapt to prolonged stimulation.              "These results are highly unexpected and could pave the way to novel       therapeutic approaches for diseases such as heart failure and diabetes       or the development of more effective and better tolerated analgesics."       Pioneering research methods could lead to novel drug therapies This       success was only possible thanks to the unique multidisciplinary       collaborative environment provided by COMPARE, a world-leading research       centre for the study of membrane proteins and receptors that brings       together 36 research groups with complementary expertise in cell biology,       receptor pharmacology, biophysics, advanced microscopy and computer       science.              The novel single-molecule microscopy and computational approaches       developed in this study could provide a significant new tool for future       drug development, allowing researchers to directly observe how therapeutic       agents modulate receptor activity in living cells with unprecedented       detail. In the future, COMPARE researchers led by Prof Calebiro plan to       further automate the current pipeline so that it can be used to screen       for novel drugs such as biased opioids currently in development for the       treatment of pain.              Dr Zsombor Koszegi, who shares first co-authorship of the study with Dr       Jak Grimes and Dr Yann Lanoisele'e, said: "Being able to see for the       first time how individual receptors and beta- arrestins work in our       cells was incredibly exciting.              "Our findings are highly unexpected and bring our understanding of       the way beta-arrestin coordinates receptor signalling to a whole new       level, with major implications for cell biology and drug discovery."       The research was funded by the Wellcome Trust, Medical Research Council       and the DBT/Wellcome Trust India Alliance.               * RELATED_TOPICS        o Health_&_Medicine        # Vitamin_A # Stem_Cells # Immune_System #        Alzheimer's_Research # Pharmacology # Human_Biology #        Cancer # Medical_Topics        * RELATED_TERMS        o Analgesic o Confocal_laser_scanning_microscopy o Artery o        Echocardiography o Psychedelic_drug o Suicide o Chemotherapy        o Chronic_pain              ==========================================================================       Story Source: Materials provided by University_of_Birmingham. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Jak Grimes, Zsombor Koszegi, Yann Lanoisele'e, Tamara Miljus,        Shannon L.               O'Brien, Tomasz M. Stepniewski, Brian Medel-Lacruz, Mithu Baidya,        Maria Makarova, Ravi Mistry, Joe"lle Goulding, Julia Drube,        Carsten Hoffmann, Dylan M. Owen, Arun K. Shukla, Jana Selent,        Stephen J. Hill, Davide Calebiro. Plasma membrane preassociation        drives b-arrestin coupling to receptors and activation. Cell,        2023; DOI: 10.1016/j.cell.2023.04.018       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/05/230504121035.htm              --- up 1 year, 9 weeks, 3 days, 10 hours, 52 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca