home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   EARTH      Uhh, that 3rd rock from the sun?      8,931 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 8,124 of 8,931   
   ScienceDaily to All   
   Direct image of a black hole expelling a   
   26 Apr 23 22:30:24   
   
   MSGID: 1:317/3 6449fa62   
   PID: hpt/lnx 1.9.0-cur 2019-01-08   
   TID: hpt/lnx 1.9.0-cur 2019-01-08   
    Direct image of a black hole expelling a powerful jet    
      
     Date:   
         April 26, 2023   
     Source:   
         ESO   
     Summary:   
         Astronomers have observed, in one image, the shadow of the black   
         hole at the center of the galaxy Messier 87 (M87) and the powerful   
         jet expelled from it. Thanks to this new image, astronomers can   
         better understand how black holes can launch such energetic jets.   
      
      
         Facebook Twitter Pinterest LinkedIN Email   
      
   ==========================================================================   
   FULL STORY   
   ==========================================================================   
   For the first time, astronomers have observed, in the same image, the   
   shadow of the black hole at the centre of the galaxy Messier 87 (M87)   
   and the powerful jet expelled from it. The observations were done in 2018   
   with telescopes from the Global Millimetre VLBI Array (GMVA), the Atacama   
   Large Millimeter/ submillimeter Array (ALMA), of which ESO is a partner,   
   and the Greenland Telescope (GLT). Thanks to this new image, astronomers   
   can better understand how black holes can launch such energetic jets.   
      
   Most galaxies harbour a supermassive black hole at their centre. While   
   black holes are known for engulfing matter in their immediate vicinity,   
   they can also launch powerful jets of matter that extend beyond the   
   galaxies that they live in. Understanding how black holes create such   
   enormous jets has been a long standing problem in astronomy. "We know   
   that jets are ejected from the region surrounding black holes," says   
   Ru-Sen Lu from the Shanghai Astronomical Observatory in China, "but we   
   still do not fully understand how this actually happens. To study this   
   directly we need to observe the origin of the jet as close as possible to   
   the black hole."  The new image published today shows precisely this for   
   the first time: how the base of a jet connects with the matter swirling   
   around a supermassive black hole. The target is the galaxy M87, located 55   
   million light-years away in our cosmic neighbourhood, and home to a black   
   hole 6.5 billion times more massive than the Sun. Previous observations   
   had managed to separately image the region close to the black hole and   
   the jet, but this is the first time both features have been observed   
   together. "This new image completes the picture by showing the region   
   around the black hole and the jet at the same time," adds Jae-Young Kim   
   from the Kyungpook National University in South Korea and the Max Planck   
   Institute for Radio Astronomy in Germany.   
      
   The image was obtained with the GMVA, ALMA and the GLT, forming a   
   network of radio-telescopes around the globe working together as a   
   virtual Earth-sized telescope. Such a large network can discern very   
   small details in the region around M87's black hole.   
      
   The new image shows the jet emerging near the black hole, as well as   
   what scientists call the shadow of the black hole. As matter orbits   
   the black hole, it heats up and emits light. The black hole bends and   
   captures some of this light, creating a ring-like structure around the   
   black hole as seen from Earth.   
      
   The darkness at the centre of the ring is the black hole shadow, which was   
   first imaged by the Event Horizon Telescope (EHT) in 2017. Both this new   
   image and the EHT one combine data taken with several radio-telescopes   
   worldwide, but the image released today shows radio light emitted at a   
   longer wavelength than the EHT one: 3.5 mm instead of 1.3 mm. "At this   
   wavelength, we can see how the jet emerges from the ring of emission   
   around the central supermassive black hole," says Thomas Krichbaum of   
   the Max Planck Institute for Radio Astronomy.   
      
   The size of the ring observed by the GMVA network is roughly 50% larger   
   in comparison to the Event Horizon Telescope image. "To understand the   
   physical origin of the bigger and thicker ring, we had to use computer   
   simulations to test different scenarios," explains Keiichi Asada from   
   the Academia Sinica in Taiwan. The results suggest the new image reveals   
   more of the material that is falling towards the black hole than what   
   could be observed with the EHT.   
      
   These new observations of M87's black hole were conducted in 2018 with   
   the GMVA, which consists of 14 radio-telescopes in Europe and North   
   America [1]. In addition, two other facilities were linked to the GMVA:   
   the Greenland Telescope and ALMA, of which ESO is a partner. ALMA consists   
   of 66 antennas in the Chilean Atacama desert, and it played a key role in   
   these observations. The data collected by all these telescopes worldwide   
   are combined using a technique called interferometry, which synchronises   
   the signals taken by each individual facility. But to properly capture the   
   actual shape of an astronomical object it's important that the telescopes   
   are spread all over the Earth. The GMVA telescopes are mostly aligned   
   East-to-West, so the addition of ALMA in the Southern hemisphere proved   
   essential to capture this image of the jet and shadow of M87's black   
   hole. "Thanks to ALMA's location and sensitivity, we could reveal the   
   black hole shadow and see deeper into the emission of the jet at the   
   same time," explains Lu.   
      
   Future observations with this network of telescopes will continue to   
   unravel how supermassive black holes can launch powerful jets. "We plan to   
   observe the region around the black hole at the centre of M87 at different   
   radio wavelengths to further study the emission of the jet," says Eduardo   
   Ros from the Max Planck Institute for Radio Astronomy. Such simultaneous   
   observations would allow the team to disentangle the complicated processes   
   that happen near the supermassive black hole. "The coming years will be   
   exciting, as we will be able to learn more about what happens near one   
   of the most mysterious regions in the Universe," concludes Ros.   
      
       * RELATED_TOPICS   
             o Space_&_Time   
                   # Black_Holes # Astronomy # Galaxies # Astrophysics #   
                   Space_Telescopes # Space_Exploration # Stars # NASA   
       * RELATED_TERMS   
             o Spitzer_space_telescope o Black_hole o Hubble_Deep_Field o   
             Andromeda_Galaxy o Barred_spiral_galaxy o Black_body o Galaxy   
             o Holographic_Universe   
      
   ==========================================================================   
   Story Source: Materials provided by ESO. Note: Content may be edited   
   for style and length.   
      
      
   ==========================================================================   
   Related Multimedia:   
       * A_view_of_the_jet_and_shadow_of_M87's_black_hole   
   ==========================================================================   
   Journal Reference:   
      1. Ru-Sen Lu, Keiichi Asada, Thomas P. Krichbaum, Jongho Park,   
      Fumie Tazaki,   
         Hung-Yi Pu, Masanori Nakamura, Andrei Lobanov, Kazuhiro Hada,   
         Kazunori Akiyama, Jae-Young Kim, Ivan Marti-Vidal, Jose' L. Go'mez,   
         Tomohisa Kawashima, Feng Yuan, Eduardo Ros, Walter Alef, Silke   
         Britzen, Michael Bremer, Avery E. Broderick, Akihiro Doi, Gabriele   
         Giovannini, Marcello Giroletti, Paul T. P. Ho, Mareki Honma, David   
         H. Hughes, Makoto Inoue, Wu Jiang, Motoki Kino, Shoko Koyama,   
         Michael Lindqvist, Jun Liu, Alan P.   
      
         Marscher, Satoki Matsushita, Hiroshi Nagai, Helge Rottmann, Tuomas   
         Savolainen, Karl-Friedrich Schuster, Zhi-Qiang Shen, Pablo de   
         Vicente, R.   
      
         Craig Walker, Hai Yang, J. Anton Zensus, Juan Carlos Algaba,   
         Alexander Allardi, Uwe Bach, Ryan Berthold, Dan Bintley,   
         Do-Young Byun, Carolina Casadio, Shu-Hao Chang, Chih-Cheng Chang,   
         Song-Chu Chang, Chung-Chen Chen, Ming-Tang Chen, Ryan Chilson,   
         Tim C. Chuter, John Conway, Geoffrey B. Crew, Jessica T. Dempsey,   
         Sven Dornbusch, Aaron Faber, Per Friberg, Javier Gonza'lez Garci'a,   
         Miguel Go'mez Garrido, Chih-Chiang Han, Kuo- Chang Han, Yutaka   
         Hasegawa, Ruben Herrero-Illana, Yau-De Huang, Chih-Wei L. Huang,   
         Violette Impellizzeri, Homin Jiang, Hao Jinchi, Taehyun Jung, Juha   
         Kallunki, Petri Kirves, Kimihiro Kimura, Jun Yi Koay, Patrick M.   
      
         Koch, Carsten Kramer, Alex Kraus, Derek Kubo, Cheng-Yu Kuo, Chao-Te   
         Li, Lupin Chun-Che Lin, Ching-Tang Liu, Kuan-Yu Liu, Wen-Ping Lo,   
         Li-Ming Lu, Nicholas MacDonald, Pierre Martin-Cocher, Hugo Messias,   
         Zheng Meyer-Zhao, Anthony Minter, Dhanya G. Nair, Hiroaki Nishioka,   
         Timothy J. Norton, George Nystrom, Hideo Ogawa, Peter Oshiro,   
         Nimesh A. Patel, Ue-Li Pen, Yurii Pidopryhora, Nicolas Pradel,   
         Philippe A. Raffin, Ramprasad Rao, Ignacio Ruiz, Salvador Sanchez,   
         Paul Shaw, William Snow, T. K. Sridharan, Ranjani Srinivasan,   
         Bele'n Tercero, Pablo Torne, Efthalia Traianou, Jan Wagner, Craig   
         Walther, Ta-Shun Wei, Jun Yang, Chen-Yu Yu. A ring-like accretion   
         structure in M87 connecting its black hole and jet. Nature, 2023;   
         616 (7958): 686 DOI: 10.1038/s41586-023-05843-w   
   ==========================================================================   
      
   Link to news story:   
   https://www.sciencedaily.com/releases/2023/04/230426210530.htm   
      
   --- up 1 year, 8 weeks, 2 days, 10 hours, 50 minutes   
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)   
   SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114   
   SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 292/854 298/25   
   SEEN-BY: 305/3 317/3 320/219 396/45   
   PATH: 317/3 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca