Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,124 of 8,931    |
|    ScienceDaily to All    |
|    Direct image of a black hole expelling a    |
|    26 Apr 23 22:30:24    |
      MSGID: 1:317/3 6449fa62       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Direct image of a black hole expelling a powerful jet                Date:        April 26, 2023        Source:        ESO        Summary:        Astronomers have observed, in one image, the shadow of the black        hole at the center of the galaxy Messier 87 (M87) and the powerful        jet expelled from it. Thanks to this new image, astronomers can        better understand how black holes can launch such energetic jets.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       For the first time, astronomers have observed, in the same image, the       shadow of the black hole at the centre of the galaxy Messier 87 (M87)       and the powerful jet expelled from it. The observations were done in 2018       with telescopes from the Global Millimetre VLBI Array (GMVA), the Atacama       Large Millimeter/ submillimeter Array (ALMA), of which ESO is a partner,       and the Greenland Telescope (GLT). Thanks to this new image, astronomers       can better understand how black holes can launch such energetic jets.              Most galaxies harbour a supermassive black hole at their centre. While       black holes are known for engulfing matter in their immediate vicinity,       they can also launch powerful jets of matter that extend beyond the       galaxies that they live in. Understanding how black holes create such       enormous jets has been a long standing problem in astronomy. "We know       that jets are ejected from the region surrounding black holes," says       Ru-Sen Lu from the Shanghai Astronomical Observatory in China, "but we       still do not fully understand how this actually happens. To study this       directly we need to observe the origin of the jet as close as possible to       the black hole." The new image published today shows precisely this for       the first time: how the base of a jet connects with the matter swirling       around a supermassive black hole. The target is the galaxy M87, located 55       million light-years away in our cosmic neighbourhood, and home to a black       hole 6.5 billion times more massive than the Sun. Previous observations       had managed to separately image the region close to the black hole and       the jet, but this is the first time both features have been observed       together. "This new image completes the picture by showing the region       around the black hole and the jet at the same time," adds Jae-Young Kim       from the Kyungpook National University in South Korea and the Max Planck       Institute for Radio Astronomy in Germany.              The image was obtained with the GMVA, ALMA and the GLT, forming a       network of radio-telescopes around the globe working together as a       virtual Earth-sized telescope. Such a large network can discern very       small details in the region around M87's black hole.              The new image shows the jet emerging near the black hole, as well as       what scientists call the shadow of the black hole. As matter orbits       the black hole, it heats up and emits light. The black hole bends and       captures some of this light, creating a ring-like structure around the       black hole as seen from Earth.              The darkness at the centre of the ring is the black hole shadow, which was       first imaged by the Event Horizon Telescope (EHT) in 2017. Both this new       image and the EHT one combine data taken with several radio-telescopes       worldwide, but the image released today shows radio light emitted at a       longer wavelength than the EHT one: 3.5 mm instead of 1.3 mm. "At this       wavelength, we can see how the jet emerges from the ring of emission       around the central supermassive black hole," says Thomas Krichbaum of       the Max Planck Institute for Radio Astronomy.              The size of the ring observed by the GMVA network is roughly 50% larger       in comparison to the Event Horizon Telescope image. "To understand the       physical origin of the bigger and thicker ring, we had to use computer       simulations to test different scenarios," explains Keiichi Asada from       the Academia Sinica in Taiwan. The results suggest the new image reveals       more of the material that is falling towards the black hole than what       could be observed with the EHT.              These new observations of M87's black hole were conducted in 2018 with       the GMVA, which consists of 14 radio-telescopes in Europe and North       America [1]. In addition, two other facilities were linked to the GMVA:       the Greenland Telescope and ALMA, of which ESO is a partner. ALMA consists       of 66 antennas in the Chilean Atacama desert, and it played a key role in       these observations. The data collected by all these telescopes worldwide       are combined using a technique called interferometry, which synchronises       the signals taken by each individual facility. But to properly capture the       actual shape of an astronomical object it's important that the telescopes       are spread all over the Earth. The GMVA telescopes are mostly aligned       East-to-West, so the addition of ALMA in the Southern hemisphere proved       essential to capture this image of the jet and shadow of M87's black       hole. "Thanks to ALMA's location and sensitivity, we could reveal the       black hole shadow and see deeper into the emission of the jet at the       same time," explains Lu.              Future observations with this network of telescopes will continue to       unravel how supermassive black holes can launch powerful jets. "We plan to       observe the region around the black hole at the centre of M87 at different       radio wavelengths to further study the emission of the jet," says Eduardo       Ros from the Max Planck Institute for Radio Astronomy. Such simultaneous       observations would allow the team to disentangle the complicated processes       that happen near the supermassive black hole. "The coming years will be       exciting, as we will be able to learn more about what happens near one       of the most mysterious regions in the Universe," concludes Ros.               * RELATED_TOPICS        o Space_&_Time        # Black_Holes # Astronomy # Galaxies # Astrophysics #        Space_Telescopes # Space_Exploration # Stars # NASA        * RELATED_TERMS        o Spitzer_space_telescope o Black_hole o Hubble_Deep_Field o        Andromeda_Galaxy o Barred_spiral_galaxy o Black_body o Galaxy        o Holographic_Universe              ==========================================================================       Story Source: Materials provided by ESO. Note: Content may be edited       for style and length.                     ==========================================================================       Related Multimedia:        * A_view_of_the_jet_and_shadow_of_M87's_black_hole       ==========================================================================       Journal Reference:        1. Ru-Sen Lu, Keiichi Asada, Thomas P. Krichbaum, Jongho Park,        Fumie Tazaki,        Hung-Yi Pu, Masanori Nakamura, Andrei Lobanov, Kazuhiro Hada,        Kazunori Akiyama, Jae-Young Kim, Ivan Marti-Vidal, Jose' L. Go'mez,        Tomohisa Kawashima, Feng Yuan, Eduardo Ros, Walter Alef, Silke        Britzen, Michael Bremer, Avery E. Broderick, Akihiro Doi, Gabriele        Giovannini, Marcello Giroletti, Paul T. P. Ho, Mareki Honma, David        H. Hughes, Makoto Inoue, Wu Jiang, Motoki Kino, Shoko Koyama,        Michael Lindqvist, Jun Liu, Alan P.               Marscher, Satoki Matsushita, Hiroshi Nagai, Helge Rottmann, Tuomas        Savolainen, Karl-Friedrich Schuster, Zhi-Qiang Shen, Pablo de        Vicente, R.               Craig Walker, Hai Yang, J. Anton Zensus, Juan Carlos Algaba,        Alexander Allardi, Uwe Bach, Ryan Berthold, Dan Bintley,        Do-Young Byun, Carolina Casadio, Shu-Hao Chang, Chih-Cheng Chang,        Song-Chu Chang, Chung-Chen Chen, Ming-Tang Chen, Ryan Chilson,        Tim C. Chuter, John Conway, Geoffrey B. Crew, Jessica T. Dempsey,        Sven Dornbusch, Aaron Faber, Per Friberg, Javier Gonza'lez Garci'a,        Miguel Go'mez Garrido, Chih-Chiang Han, Kuo- Chang Han, Yutaka        Hasegawa, Ruben Herrero-Illana, Yau-De Huang, Chih-Wei L. Huang,        Violette Impellizzeri, Homin Jiang, Hao Jinchi, Taehyun Jung, Juha        Kallunki, Petri Kirves, Kimihiro Kimura, Jun Yi Koay, Patrick M.               Koch, Carsten Kramer, Alex Kraus, Derek Kubo, Cheng-Yu Kuo, Chao-Te        Li, Lupin Chun-Che Lin, Ching-Tang Liu, Kuan-Yu Liu, Wen-Ping Lo,        Li-Ming Lu, Nicholas MacDonald, Pierre Martin-Cocher, Hugo Messias,        Zheng Meyer-Zhao, Anthony Minter, Dhanya G. Nair, Hiroaki Nishioka,        Timothy J. Norton, George Nystrom, Hideo Ogawa, Peter Oshiro,        Nimesh A. Patel, Ue-Li Pen, Yurii Pidopryhora, Nicolas Pradel,        Philippe A. Raffin, Ramprasad Rao, Ignacio Ruiz, Salvador Sanchez,        Paul Shaw, William Snow, T. K. Sridharan, Ranjani Srinivasan,        Bele'n Tercero, Pablo Torne, Efthalia Traianou, Jan Wagner, Craig        Walther, Ta-Shun Wei, Jun Yang, Chen-Yu Yu. A ring-like accretion        structure in M87 connecting its black hole and jet. Nature, 2023;        616 (7958): 686 DOI: 10.1038/s41586-023-05843-w       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/04/230426210530.htm              --- up 1 year, 8 weeks, 2 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca