home bbs files messages ]

Just a sample of the Echomail archive

Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.

   EARTH      Uhh, that 3rd rock from the sun?      8,931 messages   

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]

   Message 8,120 of 8,931   
   ScienceDaily to All   
   How to land on a planet safely   
   25 Apr 23 22:30:22   
   
   MSGID: 1:317/3 6448a8f7   
   PID: hpt/lnx 1.9.0-cur 2019-01-08   
   TID: hpt/lnx 1.9.0-cur 2019-01-08   
    How to land on a planet safely    
    Simulations capture the interaction between a rocket plume and the   
   surface and find ways to make planetary descents and ascents safer    
      
     Date:   
         April 25, 2023   
     Source:   
         American Institute of Physics   
     Summary:   
         Researchers develop a model to describe the interaction between   
         a rocket plume and the surface of a planetary body in near-vacuum   
         conditions. The computational framework takes in information about   
         the rocket, its engines, and the surface composition and topography,   
         as well as the atmospheric conditions and gravitational forces   
         at the landing site, and the results can be used to evaluate the   
         safety and feasibility of a proposed landing site and to optimize   
         the design of spacecraft and rocket engines for planetary landings.   
      
      
         Facebook Twitter Pinterest LinkedIN Email   
      
   ==========================================================================   
   FULL STORY   
   ==========================================================================   
   When a lander descends toward the moon -- or a rocky planet, asteroid,   
   or comet -- the exhaust plume of the rocket interacts with the surface,   
   causing erosion and kicking up regolith particles. The resulting   
   blanket of dusty debris can create a dangerous brownout effect, limiting   
   visibility and potentially damaging the spacecraft or nearby equipment.   
      
   InPhysics of Fluids, by AIP Publishing, researchers from Chungnam National   
   University, the University of Edinburgh, Gyeongsang National University,   
   and the Korea Institute of Science and Technology Information developed a   
   model to describe the interaction between a rocket plume and the surface   
   of a planetary body in near-vacuum conditions. The results can be used   
   to evaluate the safety and feasibility of a proposed landing site and   
   to optimize the design of spacecraft and rocket engines for planetary   
   landings.   
      
   "Understanding the interaction between the rocket plume and the surface   
   is important for the safety and success of space missions in terms of   
   contamination and erosion, landing accuracy, planetary protection, and   
   engineering design, as well as for scientific understanding and future   
   exploration," said author Byoung Jae Kim of Chungnam National University.   
      
   The computational framework takes in information about the rocket,   
   its engines, and the surface composition and topography, as well as the   
   atmospheric conditions and gravitational forces at the landing site.   
      
   By considering the interaction of the gas with solid particles as a   
   system of equations, the simulation estimates the shape and size of the   
   plume, the temperature and pressure of the plume and surface, and the   
   amount of material eroded or displaced. It does so in a way that is more   
   computationally efficient than previous methods.   
      
   "Our tool can simulate the plume surface interaction problem at the   
   fundamental level (e.g., scour pattern formation and development of   
   erosion models) and for practical engineering applications (e.g.,   
   predicting particle trajectories to avoid damage to the lander and   
   previously established sites and planning descend/ascend scenarios),"   
   said Kim.   
      
   In the model, small regolith particles reached high altitudes and caused   
   severe brownout effects during ascent and descent. In contrast, larger   
   particles with increased bed height led to a more favorable brownout   
   status.   
      
   "The insights gained from this study of the effects of different   
   parameters on plume-surface interaction can inform the development of   
   more effective and efficient landing technologies," said Kim. "The study   
   also sheds light on the festooned scour patterns that can be observed on   
   planetary surfaces, which can provide valuable information for future   
   scientific investigations of planetary bodies."  The researchers plan   
   to improve the capabilities of the framework to include more complex   
   physics, such as chemical reactions and solid particle collisions.   
      
   They believe the model can be applied to other physics scenarios including   
   needle-free drug delivery systems.   
      
       * RELATED_TOPICS   
             o Space_&_Time   
                   # Moon # Sun # Space_Probes # Space_Exploration #   
                   Solar_Flare # Nebulae # Astronomy # Astrophysics   
       * RELATED_TERMS   
             o Rocket_engine o Model_rocket o Rocket o Spacecraft_propulsion   
             o Solid-fuel_rocket o Multistage_rocket o Water_rocket o   
             Hybrid_rocket   
      
   ==========================================================================   
   Story Source: Materials provided by American_Institute_of_Physics. Note:   
   Content may be edited for style and length.   
      
      
   ==========================================================================   
   Journal Reference:   
      1. Omid Ejtehadi, Rho Shin Myong, I. Sohn, B.J. Kim. Full continuum   
      approach   
         for simulating plume-surface interaction in planetary   
         landings. Physics of Fluids, 2023; DOI: 10.1063/5.0143398   
   ==========================================================================   
      
   Link to news story:   
   https://www.sciencedaily.com/releases/2023/04/230425111142.htm   
      
   --- up 1 year, 8 weeks, 1 day, 10 hours, 50 minutes   
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)   
   SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114   
   SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 292/854 298/25   
   SEEN-BY: 305/3 317/3 320/219 396/45   
   PATH: 317/3 229/426   
      

[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]


(c) 1994,  bbs@darkrealms.ca