Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,120 of 8,931    |
|    ScienceDaily to All    |
|    How to land on a planet safely    |
|    25 Apr 23 22:30:22    |
      MSGID: 1:317/3 6448a8f7       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        How to land on a planet safely         Simulations capture the interaction between a rocket plume and the       surface and find ways to make planetary descents and ascents safer                Date:        April 25, 2023        Source:        American Institute of Physics        Summary:        Researchers develop a model to describe the interaction between        a rocket plume and the surface of a planetary body in near-vacuum        conditions. The computational framework takes in information about        the rocket, its engines, and the surface composition and topography,        as well as the atmospheric conditions and gravitational forces        at the landing site, and the results can be used to evaluate the        safety and feasibility of a proposed landing site and to optimize        the design of spacecraft and rocket engines for planetary landings.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       When a lander descends toward the moon -- or a rocky planet, asteroid,       or comet -- the exhaust plume of the rocket interacts with the surface,       causing erosion and kicking up regolith particles. The resulting       blanket of dusty debris can create a dangerous brownout effect, limiting       visibility and potentially damaging the spacecraft or nearby equipment.              InPhysics of Fluids, by AIP Publishing, researchers from Chungnam National       University, the University of Edinburgh, Gyeongsang National University,       and the Korea Institute of Science and Technology Information developed a       model to describe the interaction between a rocket plume and the surface       of a planetary body in near-vacuum conditions. The results can be used       to evaluate the safety and feasibility of a proposed landing site and       to optimize the design of spacecraft and rocket engines for planetary       landings.              "Understanding the interaction between the rocket plume and the surface       is important for the safety and success of space missions in terms of       contamination and erosion, landing accuracy, planetary protection, and       engineering design, as well as for scientific understanding and future       exploration," said author Byoung Jae Kim of Chungnam National University.              The computational framework takes in information about the rocket,       its engines, and the surface composition and topography, as well as the       atmospheric conditions and gravitational forces at the landing site.              By considering the interaction of the gas with solid particles as a       system of equations, the simulation estimates the shape and size of the       plume, the temperature and pressure of the plume and surface, and the       amount of material eroded or displaced. It does so in a way that is more       computationally efficient than previous methods.              "Our tool can simulate the plume surface interaction problem at the       fundamental level (e.g., scour pattern formation and development of       erosion models) and for practical engineering applications (e.g.,       predicting particle trajectories to avoid damage to the lander and       previously established sites and planning descend/ascend scenarios),"       said Kim.              In the model, small regolith particles reached high altitudes and caused       severe brownout effects during ascent and descent. In contrast, larger       particles with increased bed height led to a more favorable brownout       status.              "The insights gained from this study of the effects of different       parameters on plume-surface interaction can inform the development of       more effective and efficient landing technologies," said Kim. "The study       also sheds light on the festooned scour patterns that can be observed on       planetary surfaces, which can provide valuable information for future       scientific investigations of planetary bodies." The researchers plan       to improve the capabilities of the framework to include more complex       physics, such as chemical reactions and solid particle collisions.              They believe the model can be applied to other physics scenarios including       needle-free drug delivery systems.               * RELATED_TOPICS        o Space_&_Time        # Moon # Sun # Space_Probes # Space_Exploration #        Solar_Flare # Nebulae # Astronomy # Astrophysics        * RELATED_TERMS        o Rocket_engine o Model_rocket o Rocket o Spacecraft_propulsion        o Solid-fuel_rocket o Multistage_rocket o Water_rocket o        Hybrid_rocket              ==========================================================================       Story Source: Materials provided by American_Institute_of_Physics. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Omid Ejtehadi, Rho Shin Myong, I. Sohn, B.J. Kim. Full continuum        approach        for simulating plume-surface interaction in planetary        landings. Physics of Fluids, 2023; DOI: 10.1063/5.0143398       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/04/230425111142.htm              --- up 1 year, 8 weeks, 1 day, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca