Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,119 of 8,931    |
|    ScienceDaily to All    |
|    Creating a tsunami early warning system     |
|    25 Apr 23 22:30:20    |
      MSGID: 1:317/3 6448a8f4       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Creating a tsunami early warning system using artificial intelligence        Real-time classification of underwater earthquakes based on acoustic       signals enables earlier, more reliable disaster preparation                Date:        April 25, 2023        Source:        American Institute of Physics        Summary:        Researchers develop an early warning system that combines acoustic        technology with AI to immediately classify earthquakes and determine        potential tsunami risk. They propose using underwater microphones,        called hydrophones, to measure the acoustic radiation produced        by the earthquake, which carries information about the tectonic        event and travels significantly faster than tsunami waves. The        computational model triangulates the source of the earthquake        and AI algorithms classify its slip type and magnitude. It then        calculates important properties like effective length and width,        uplift speed, and duration, which dictate the size of the tsunami.                      Facebook Twitter Pinterest LinkedIN Email              ==========================================================================       FULL STORY       ==========================================================================       Tsunamis are incredibly destructive waves that can destroy coastal       infrastructure and cause loss of life. Early warnings for such natural       disasters are difficult because the risk of a tsunami is highly dependent       on the features of the underwater earthquake that triggers it.              In Physics of Fluids, by AIP Publishing, researchers from the University       of California, Los Angeles and Cardiff University in the U.K. developed an       early warning system that combines state-of-the-art acoustic technology       with artificial intelligence to immediately classify earthquakes and       determine potential tsunami risk.              Underwater earthquakes can trigger tsunamis if a large amount of water is       displaced, so determining the type of earthquake is critical to assessing       the tsunami risk.              "Tectonic events with a strong vertical slip element are more likely to       raise or lower the water column compared to horizontal slip elements,"       said co-author Bernabe Gomez. "Thus, knowing the slip type at the       early stages of the assessment can reduce false alarms and enhance the       reliability of the warning systems through independent cross-validation."       In these cases, time is of the essence, and relying on deep ocean wave       buoys to measure water levels often leaves insufficient evacuation       time. Instead, the researchers propose measuring the acoustic radiation       (sound) produced by the earthquake, which carries information about       the tectonic event and travels significantly faster than tsunami       waves. Underwater microphones, called hydrophones, record the acoustic       waves and monitor tectonic activity in real time.              "Acoustic radiation travels through the water column much faster than       tsunami waves. It carries information about the originating source and its       pressure field can be recorded at distant locations, even thousands of       kilometers away from the source. The derivation of analytical solutions       for the pressure field is a key factor in the real-time analysis,"       co-author Usama Kadri said.              The computational model triangulates the source of the earthquake from the       hydrophones and AI algorithms classify its slip type and magnitude. It       then calculates important properties like effective length and width,       uplift speed, and duration, which dictate the size of the tsunami.              The authors tested their model with available hydrophone data and found       it almost instantaneously and successfully described the earthquake       parameters with low computational demand. They are improving the model by       factoring in more information to increase the tsunami characterization's       accuracy.              Their work predicting tsunami risk is part of a larger project to enhance       hazard warning systems. The tsunami classification is a back-end aspect       of a software that can improve the safety of offshore platforms and ships.               * RELATED_TOPICS        o Earth_&_Climate        # Tsunamis # Natural_Disasters # Earthquakes # Water        o Computers_&_Math        # Computer_Modeling # Computational_Biology #        Mathematical_Modeling # Software        * RELATED_TERMS        o Tsunami o Megatsunami o Earthquake o Great_Chilean_Earthquake        o Seismic_wave o Earthquake_liquefaction o        2004_Indian_Ocean_earthquake o 2005_Kashmir_earthquake              ==========================================================================       Story Source: Materials provided by American_Institute_of_Physics. Note:       Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Bernabe Gomez and Usama Kadri. Numerical validation of an effective        slender fault source solution for past tsunami scenarios. Physics        of Fluids, 2023 DOI: 10.1063/5.0144360       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/04/230425111152.htm              --- up 1 year, 8 weeks, 1 day, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca