Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,061 of 8,931    |
|    ScienceDaily to All    |
|    Teasing strange matter from the ordinary    |
|    18 Apr 23 22:30:26    |
      MSGID: 1:317/3 643f6e64       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Teasing strange matter from the ordinary                Date:        April 18, 2023        Source:        DOE/Thomas Jefferson National Accelerator Facility        Summary:        In a unique analysis of experimental data, nuclear physicists        have made observations of how lambda particles, so-called 'strange        matter,' are produced by a specific process called semi-inclusive        deep inelastic scattering (SIDIS). What's more, these data hint        that the building blocks of protons, quarks and gluons, are capable        of marching through the atomic nucleus in pairs called diquarks,        at least part of the time.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       In a unique analysis of experimental data, nuclear physicists have made       the first-ever observations of how lambda particles, so-called "strange       matter," are produced by a specific process called semi-inclusive deep       inelastic scattering (SIDIS). What's more, these data hint that the       building blocks of protons, quarks and gluons, are capable of marching       through the atomic nucleus in pairs called diquarks, at least part       of the time. These results come from an experiment conducted at the       U.S. Department of Energy's Thomas Jefferson National Accelerator       Facility.                     ==========================================================================       It's a result that has been decades in the making. The dataset was       originally collected in 2004. Lamiaa El Fassi, now an associate professor       of physics at Mississippi State University and principal investigator       of the work, first analyzed these data during her thesis project to earn       her graduate degree on a different topic.              Nearly a decade after completing her initial research with these data,       El Fassi revisited the dataset and led her group through a careful       analysis to yield these unprecedented measurements. The dataset comes       from experiments in Jefferson Lab's Continuous Electron Beam Accelerator       Facility (CEBAF), a DOE user facility. In the experiment, nuclear       physicists tracked what happened when electrons from CEBAF scatter off       the target nucleus and probe the confined quarks inside protons and       neutrons. The results were recently published in Physical Review Letters.              "These studies help build a story, analogous to a motion picture,       of how the struck quark turns into hadrons. In a new paper, we report       first-ever observations of such a study for the lambda baryon in the       forward and backward fragmentation regions," El Fassi said.              In like a lambda, out like a pion Like the more familiar protons and       neutrons, each lambda is made up of three quarks.              Unlike protons and neutrons, which only contain a mixture of up and       down quarks, lambdas contain one up quark, one down quark and one       strange quark.              Physicists have dubbed matter that contains strange quarks "strange       matter." In this work, El Fassi and her colleagues studied how these       particles of strange matter form from collisions of ordinary matter. To       do so, they shot CEBAF's electron beam at different targets, including       carbon, iron, and lead.              When a high-energy electron from CEBAF reaches one of these targets,       it breaks apart a proton or neutron inside one of the target's nuclei.              "Because the proton or neutron is totally broken apart, there is little       doubt that the electron interacts with the quark inside," El Fassi said.              After the electron interacts with a quark or quarks via an exchanged       virtual photon, the "struck" quark(s) begins moving as a free particle       in the medium, typically joining up with other quark(s) it encounters to       form a new composite particle as they propagate through the nucleus. And       some of the time, this composite particle will be a lambda.              But the lambda is short-lived -- after formation, it will swiftly decay       into two other particles: a pion and either a proton or neutron. To       measure different properties of these briefly created lambda particles,       physicists must detect its two daughter particles, as well as the beam       electron that scattered off the target nucleus.              The experiment that collected this data, EG2, used the CEBAF Large       Acceptance Spectrometer (CLAS) detector in Jefferson Lab's Experimental       Hall B. These recently published results, "First Measurement of       ? Electroproduction off Nuclei in the Current and Target Fragmentation       Regions," are part of the CLAS collaboration, which involves almost 200       physicists worldwide.              SIDIS This work is the first to measure the lambda using this process,       which is known as semi-inclusive deep inelastic scattering, in the       forward and backward fragmentation regions. It's more difficult to use       this method to study lambda particles, because the particle decays so       quickly, it can't be measured directly.              "This class of measurement has only been performed on protons before,       and on lighter, more stable particles," said coauthor William Brooks,       professor of physics at Federico Santa Mari'a Technical University and       co-spokesperson of the EG2 experiment.              The analysis was so challenging, it took several years for El Fassi       and her group to re-analyze the data and extract these results. It was       her thesis advisor, Kawtar Hafidi, who encouraged her to pursue the       investigation of the lambda from these datasets.              "I would like to commend Lamiaa's hard work and perseverance in dedicating       years of her career working on this," said Hafidi, associate laboratory       director for physical sciences and engineering at Argonne National Lab and       co- spokesperson of the EG2 experiment. "Without her, this work would not       have seen fruition." "It hasn't been easy," El Fassi said. "It's a long       and time-consuming process, but it was worth the effort. When you spend       so many years working on something, it feels good to see it published."       El Fassi began this lambda analysis when she herself was a postdoc, a       couple of years prior to becoming an assistant professor at Mississippi       State University.              Along the way, several of her own postdocs at Mississippi State have       helped extract these results, including coauthor Taya Chetry.              "I'm very happy and motivated to see this work being published," said       Chetry, who is now a postdoctoral researcher at Florida International       University.              Two for one A notable finding from this intensive analysis changes the way       physicists understand how lambdas form in the wake of particle collisions.              In similar studies that have used semi-inclusive deep inelastic scattering       to study other particles, the particles of interest usually form after       a single quark was "struck" by the virtual photon exchanged between the       electron beam and the target nucleus. But the signal left by lambda in       the CLAS detector suggests a more packaged deal.              The authors' analysis showed that when forming a lambda, the virtual       photonhas been absorbed part of the time by a pair of quarks, known as       a diquark, instead of just one. After being "struck," this diquark went       on to find a strange quark and forms a lambda.              "This quark pairing suggests a different mechanism of production and       interaction than the case of the single quark interaction," Hafidi said.              A better understanding of how different particles form helps physicists       in their effort to decipher the strong interaction, the fundamental       force that holds these quark-containing particles together. The dynamics       of this interaction are very complicated, and so is the theory used to       describe it: quantum chromodynamics (QCD).              Comparing measurements to models of QCD's predictions allows physicists       to test this theory. Because the diquark finding differs from the model's       current predictions, it suggests something about the model is off.              "There is an unknown ingredient that we don't understand. This is       extremely surprising, since the existing theory can describe essentially       all other observations, but not this one," Brooks said. "That means there       is something new to learn, and at the moment, we have no clue what it       could be." To find out, they'll need even more measurements.              Data for EG2 were collected with 5.014 GeV (billion electron-volt)       electron beams in the CEBAF's 6 GeV era. Future experiments will use       electron beams from the updated CEBAF, which now extend up to 11 GeV       for Experimental Hall B, as well as an updated CLAS detector known as       CLAS12, to continue studying the formation of a variety of particles,       including lambdas, with higher-energy electrons.              The upcoming Electron-Ion Collider (EIC) at DOE's Brookhaven National       Laboratory will also provide a new opportunity to continue studying       this strange matter and quark pairing structure of the nucleon with       greater precision.              "These results lay the groundwork for upcoming studies at the upcoming       CLAS12 and the planned EIC experiments, where one can investigate the       diquark scattering in greater detail," Chetry said.              El Fassi is also a co-spokesperson for CLAS12 measurements of quark       propagation and hadron formation. When data from the new experiments is       finally ready, physicists will compare it to QCD predictions to further       refine this theory.              "Any new measurement that will give novel information toward understanding       the dynamics of strong interactions is very important," she said.               * RELATED_TOPICS        o Matter_&_Energy        # Quantum_Physics # Physics # Spintronics #        Inorganic_Chemistry # Materials_Science #        Consumer_Electronics # Graphene # Nature_of_Water        * RELATED_TERMS        o Subatomic_particle o Quark o Particle_physics o        Nuclear_reaction o Nuclear_fission o Scientific_method o Atom        o Radioactive_decay              ==========================================================================       Story Source: Materials provided by       DOE/Thomas_Jefferson_National_Accelerator_Facility.              Original written by Chris Patrick. Note: Content may be edited for style       and length.                     ==========================================================================       Journal Reference:        1. T. Chetry, L. El Fassi, W. K. Brooks, R. Dupre', A. El        Alaoui, K.               Hafidi, P. Achenbach, K. P. Adhikari, Z. Akbar, W. R.               Armstrong, M. Arratia, H. Atac, H. Avakian, L. Baashen, N. A.               Baltzell, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, B.               Benkel, F. Benmokhtar, A. Bianconi, A. S. Biselli, M. Bondi,        W. A. Booth, F. Bossu`, S. Boiarinov, K.-Th. Brinkmann,        W. J. Briscoe, D. Bulumulla, V. D. Burkert,        D. S.               Carman, J. C. Carvajal, A. Celentano, P. Chatagnon,        V. Chesnokov, G. Ciullo, P. L. Cole, M. Contalbrigo,        G. Costantini, A. D'Angelo, N. Dashyan, R. De Vita, M. Defurne,        A. Deur, S. Diehl, C. Djalali, H.               Egiyan, L. Elouadrhiri, P. Eugenio, S. Fegan, A. Filippi,        G. Gavalian, Y.               Ghandilyan, G. P. Gilfoyle, D. I. Glazier,        A. A.               Golubenko, G. Gosta, R. W. Gothe, K. A. Griffioen, M.               Guidal, L. Guo, H. Hakobyan, M. Hattawy, T. B. Hayward,        D. Heddle, A. Hobart, M. Holtrop, Y. Ilieva, D. G. Ireland,        E. L.               Isupov, D. Jenkins, H. S. Jo, M. L. Kabir,        A. Khanal, M.               Khandaker, A. Kim, W. Kim, F. J. Klein, A. Kripko,        V. Kubarovsky, V. Lagerquist, L. Lanza, M. Leali, S. Lee, P. Lenisa,        X. Li, K.               Livingston, I. J. D. MacGregor, D. Marchand,        V. Mascagna, B. McKinnon, C. McLauchlin, Z. E. Meziani,        S. Migliorati, T.               Mineeva, M. Mirazita, V. Mokeev, C. Munoz Camacho,        P. Nadel-Turonski, K.               Neupane, S. Niccolai, M. Nicol, G. Niculescu, M. Osipenko,        A. I.               Ostrovidov, P. Pandey, M. Paolone, L. L. Pappalardo, R.               Paremuzyan, E. Pasyuk, S. J. Paul, W. Phelps, N. Pilleux, M.               Pokhrel, J. Poudel, J. W. Price, Y. Prok, B. A. Raue,        T.               Reed, J. Richards, M. Ripani, J. Ritman, G. Rosner, F. Sabatie', C.               Salgado, S. Schadmand, A. Schmidt, R. A. Schumacher,        Y. G.               Sharabian, E. V. Shirokov, U. Shrestha, P. Simmerling,        D. Sokhan, N. Sparveris, S. Stepanyan, I. I. Strakovsky,        S. Strauch, J. A. Tan, N. Trotta, R. Tyson, M. Ungaro,        S. Vallarino, L.               Venturelli, H. Voskanyan, E. Voutier, X. Wei,        L. B. Weinstein, R.               Williams, R. Wishart, M. H. Wood, M. Yurov,        N. Zachariou, Z. W. Zhao, M. Zurek. First Measurement        of L Electroproduction off Nuclei in the Current and Target        Fragmentation Regions. Physical Review Letters, 2023; 130 (14)        DOI: 10.1103/PhysRevLett.130.142301       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/04/230418101434.htm              --- up 1 year, 7 weeks, 1 day, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 218/700 226/30 227/114       SEEN-BY: 229/110 112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca