Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 8,035 of 8,931    |
|    ScienceDaily to All    |
|    Nanoplasmonic imaging reveals real-time     |
|    11 Apr 23 22:30:22    |
      MSGID: 1:317/3 643633f7       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Nanoplasmonic imaging reveals real-time protein secretion                Date:        April 11, 2023        Source:        Ecole Polytechnique Fe'de'rale de Lausanne        Summary:        Researchers have used a nanoplasmonics approach to observe the        real-time production of cell secretions, including proteins and        antibodies; an advancement that could aid in the development of        cancer treatments, vaccines, and other therapies.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       Cell secretions like proteins, antibodies, and neurotransmitters play       an essential role in immune response, metabolism, and communication       between cells.              Understanding cell secretions is key for developing disease treatments,       but current methods are only able to report the quantity of secretions,       without any detail as to when and where they are produced.                     ==========================================================================       Now, researchers in the BIOnanophotonic Systems Laboratory (BIOS) in       the School of Engineering and at the University of Geneva have developed       a novel optical imaging approach that gives a four-dimensional view of       cell secretions in both space and time. By placing individual cells into       microscopic wells in a nanostructured gold-plated chip, and then inducing       a phenomenon called plasmonic resonance on the chip's surface, they are       able to map secretions as they are being produced, while observing cell       shape and movement.              As it provides an unprecedentedly detailed view of how cells function and       communicate, the scientists believe their method, recently published       in Nature Biomedical Engineering, has "tremendous" potential for       pharmaceutical development as well as fundamental research.              "A key aspect of our work is that it allows us to screen cells       individually in a high-throughput fashion. Collective measurements of the       average response of many cells do not reflect their heterogeneity...and       in biology, everything is heterogeneous, from immune responses to       cancer cells. This is why cancer is so hard to treat," says BIOS head       Hatice Altug.              A million sensing elements At the heart of the scientists' method is a 1       cm2nanoplasmonic chip composed of millions of tiny holes, and hundreds       of chambers for individual cells. The chip is made of a nanostructured       gold substrate covered with a thin polymer mesh.              Each chamber is filled with a cell medium to keep the cells alive and       healthy during imaging.              "Cell secretions are like the words of the cell: they spread out       dynamically in time and space to connect with other cells. Our technology       captures key heterogeneity in terms of where and how far these 'words'       travel," says BIOS PhD student and first author Saeid Ansaryan.              The nanoplasmonics part comes in thanks to a light beam, which causes       the gold electrons to oscillate. The nanostructure is engineered so       that only certain wavelengths can penetrate it. When something --       like protein secretion - - occurs on the chip's surface to alter the       light passing through, the spectrum shifts. A CMOS (Complementary Metal       Oxide Semiconductor) image sensor and an LED translate this shift into       intensity variations on the CMOS pixels.              "The beauty of our apparatus is that the nanoholes distributed across the       entire surface transform every spot into a sensing element. This allows       us to observe the spatial patterns of released proteins irrespective of       cell position," says Ansaryan.              The method has allowed the scientists to get a glimpse of two essential       cellular processes -- cell division and cell death -- and to study       delicate antibody-secreting human donor B-cells.              "We saw the cell content released during two forms of cell death,       apoptosis and necroptosis. In the latter, the content is released in an       asymmetric burst, resulting in an image signature or fingerprint. This       has never before been shown at the single-cell level," Altug says.              Screening for cell fitness Because the method bathes the cells in a       nutritious cell medium, and does not require the toxic fluorescent labels       used by other imaging technologies, the cells under study can easily be       recovered. This gives the method great potential for use in developing       pharmaceutical drugs, vaccines, and other treatments; for example, to       help researchers understand how cells respond to different therapies at       the individual level.              "As the amount and pattern of secretions produced by a cell are a proxy       for determining their overall effectiveness, we could also imagine       immunotherapy applications where you screen patient immune cells to       identify those that are most effective, and then create a colony of       those cells," says Ansaryan.               * RELATED_TOPICS        o Health_&_Medicine        # Stem_Cells # Lymphoma # Immune_System # Lung_Cancer #        Brain_Tumor # Nervous_System # Cancer # Sickle_Cell_Anemia        * RELATED_TERMS        o Stem_cell_treatments o Adult_stem_cell o        Monoclonal_antibody_therapy o Stem_cell o Colorectal_cancer        o Cancer o Protein o DNA              ==========================================================================       Story Source: Materials provided by       Ecole_Polytechnique_Fe'de'rale_de_Lausanne. Original written by Celia       Luterbacher. Note: Content may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Saeid Ansaryan, Yen-Cheng Liu, Xiaokang Li, Augoustina Maria        Economou,        Christiane Sigrid Eberhardt, Camilla Jandus, Hatice Altug. High-        throughput spatiotemporal monitoring of single-cell secretions via        plasmonic microwell arrays. Nature Biomedical Engineering, 2023;        DOI: 10.1038/s41551-023-01017-1       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/04/230411105840.htm              --- up 1 year, 6 weeks, 1 day, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/110       SEEN-BY: 229/111 112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca