Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,996 of 8,931    |
|    ScienceDaily to All    |
|    Long-forgotten equation provides new too    |
|    06 Apr 23 22:30:24    |
      MSGID: 1:317/3 642f9c75       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        Long-forgotten equation provides new tool for converting carbon dioxide                      Date:        April 6, 2023        Source:        Cornell University        Summary:        To manage atmospheric carbon dioxide and convert the gas into a        useful product, scientists have dusted off an archaic -- now 120        years old - - electrochemical equation.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       To manage atmospheric carbon dioxide and convert the gas into a useful       product, Cornell University scientists have dusted off an archaic --       now 120 years old - - electrochemical equation.                     ==========================================================================       The calculation -- named the Cottrell equation for chemist Frederick       Gardner Cottrell, who developed it in 1903 -- can help today's researchers       understand the several reactions that carbon dioxide can take when       electrochemistry is applied and pulsed on a lab bench.              The electrochemical reduction of carbon dioxide presents an opportunity       to transform the gas from an environmental liability to a feedstock for       chemical products or as a medium to store renewable electricity in the       form of chemical bonds, as nature does.              Their work was published in the journal ACS Catalysis.              "For carbon dioxide, the better we understand the reaction pathways,       the better we can control the reaction -- which is what we want in the       long term," said lead author Rileigh Casebolt DiDomenico, a chemical       engineering doctoral student at Cornell under the supervision of       Prof. Tobias Hanrath.              "If we have better control over the reaction, then we can make what we       want, when we want to make it," DiDomenico said. "The Cottrell equation is       the tool that helps us to get there." The equation enables a researcher       to identify and control experimental parameters to take carbon dioxide and       convert it into useful carbon products like ethylene, ethane or ethanol.              Many researchers today use advanced computational methods to provide       a detailed atomistic picture of processes at the catalyst surface, but       these methods often involve several nuanced assumptions, which complicate       direct comparison to experiments, said senior author Tobias Hanrath.              "The magnificence of this old equation is that there are very few       assumptions," Hanrath said. "If you put in experimental data, you get       a better sense of truth. It's an old classic. That's the part that       I thought was beautiful." DiDomenico said: "Because it is older,       the Cottrell equation has been a forgotten technique. It's classic       electrochemistry. Just bringing it back to the forefront of people's minds       has been cool. And I think this equation will help other electrochemists       to study their own systems." The research was supported by the National       Science Foundation, a Cornell Energy Systems Institute-Corning Graduate       Fellowship and the Cornell Engineering Learning Initiative.               * RELATED_TOPICS        o Matter_&_Energy        # Organic_Chemistry # Energy_and_Resources # Chemistry #        Inorganic_Chemistry        o Earth_&_Climate        # Air_Quality # Global_Warming # Geochemistry # Climate        * RELATED_TERMS        o Carbon_dioxide o Carbon_monoxide o Fossil_fuel o        Forest o Ocean_acidification o Greenhouse_gas o Methane o        Carbon_dioxide_sink              ==========================================================================       Story Source: Materials provided by Cornell_University. Original written       by Blaine Friedlander, courtesy of the Cornell Chronicle. Note: Content       may be edited for style and length.                     ==========================================================================       Journal Reference:        1. Rileigh Casebolt DiDomenico, Kelsey Levine, Laila Reimanis,        He'ctor D.               Abrun~a, Tobias Hanrath. Mechanistic Insights into the Formation        of CO and C2 Products in Electrochemical CO2 Reduction─The        Role of Sequential Charge Transfer and Chemical Reactions. ACS        Catalysis, 2023; 4938 DOI: 10.1021/acscatal.2c06043       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/04/230406130732.htm              --- up 1 year, 5 weeks, 3 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/110       SEEN-BY: 229/111 112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca