Just a sample of the Echomail archive
Cooperative anarchy at its finest, still active today. Darkrealms is the Zone 1 Hub.
|    EARTH    |    Uhh, that 3rd rock from the sun?    |    8,931 messages    |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
|    Message 7,947 of 8,931    |
|    ScienceDaily to All    |
|    AI algorithm unblurs the cosmos    |
|    31 Mar 23 22:30:38    |
      MSGID: 1:317/3 6427b37f       PID: hpt/lnx 1.9.0-cur 2019-01-08       TID: hpt/lnx 1.9.0-cur 2019-01-08        AI algorithm unblurs the cosmos         Tool produces faster, more realistic images than current methods                Date:        March 31, 2023        Source:        Northwestern University        Summary:        Researchers adapted a well-known computer-vision algorithm        used for sharpening photos and, for the first time, applied        it to astronomical images from ground-based telescopes. While        astrophysicists already use technologies to remove blur, the adapted        AI-driven algorithm works faster and produces more realistic images        than current technologies. The resulting images are blur-free and        truer to life.                      Facebook Twitter Pinterest LinkedIN Email       FULL STORY       ==========================================================================       The cosmos would look a lot better if Earth's atmosphere wasn't photo       bombing it all the time.                     ==========================================================================       Even images obtained by the world's best ground-based telescopes are       blurry due to the atmosphere's shifting pockets of air. While seemingly       harmless, this blur obscures the shapes of objects in astronomical images,       sometimes leading to error-filled physical measurements that are essential       for understanding the nature of our universe.              Now researchers at Northwestern University and Tsinghua University in       Beijing have unveiled a new strategy to fix this issue. The team adapted       a well-known computer-vision algorithm used for sharpening photos and,       for the first time, applied it to astronomical images from ground-based       telescopes. The researchers also trained the artificial intelligence (AI)       algorithm on data simulated to match the Vera C. Rubin Observatory's       imaging parameters, so, when the observatory opens next year, the tool       will be instantly compatible.              While astrophysicists already use technologies to remove blur, the       adapted AI- driven algorithm works faster and produces more realistic       images than current technologies. The resulting images are blur-free       and truer to life. They also are beautiful -- although that's not the       technology's purpose.              "Photography's goal is often to get a pretty, nice-looking image,"       said Northwestern's Emma Alexander, the study's senior author. "But       astronomical images are used for science. By cleaning up images in       the right way, we can get more accurate data. The algorithm removes       the atmosphere computationally, enabling physicists to obtain better       scientific measurements. At the end of the day, the images do look better       as well." The research will be published March 30 in the Monthly Notices       of the Royal Astronomical Society.              Alexander is an assistant professor of computer science at Northwestern's       McCormick School of Engineering, where she runs the Bio Inspired       Vision Lab.              She co-led the new study with Tianao Li, an undergraduate in electrical       engineering at Tsinghua University and a research intern in Alexander's       lab.              When light emanates from distant stars, planets and galaxies, it travels       through Earth's atmosphere before it hits our eyes. Not only does our       atmosphere block out certain wavelengths of light, it also distorts the       light that reaches Earth. Even clear night skies still contain moving       air that affects light passing through it. That's why stars twinkle and       why the best ground-based telescopes are located at high altitudes where       the atmosphere is thinnest.              "It's a bit like looking up from the bottom of a swimming pool," Alexander       said. "The water pushes light around and distorts it. The atmosphere is,       of course, much less dense, but it's a similar concept." The blur becomes       an issue when astrophysicists analyze images to extract cosmological       data. By studying the apparent shapes of galaxies, scientists can detect       the gravitational effects of large-scale cosmological structures, which       bend light on its way to our planet. This can cause an elliptical galaxy       to appear rounder or more stretched than it really is. But atmospheric       blur smears the image in a way that warps the galaxy shape. Removing       the blur enables scientists to collect accurate shape data.              "Slight differences in shape can tell us about gravity in the universe,"       Alexander said. "These differences are already difficult to detect. If       you look at an image from a ground-based telescope, a shape might       be warped. It's hard to know if that's because of a gravitational       effect or the atmosphere." To tackle this challenge, Alexander and       Li combined an optimization algorithm with a deep-learning network       trained on astronomical images. Among the training images, the team       included simulated data that matches the Rubin Observatory's expected       imaging parameters. The resulting tool produced images with 38.6% less       error compared to classic methods for removing blur and 7.4% less error       compared to modern methods.              When the Rubin Observatory officially opens next year, its telescopes       will begin a decade-long deep survey across an enormous portion of the       night sky.              Because the researchers trained the new tool on data specifically       designed to simulate Rubin's upcoming images, it will be able to help       analyze the survey's highly anticipated data.              For astronomers interested in using the tool, the open-source,       user-friendly code and accompanying tutorials are available online.              "Now we pass off this tool, putting it into the hands of astronomy       experts," Alexander said. "We think this could be a valuable resource       for sky surveys to obtain the most realistic data possible." The study,       "Galaxy image deconvolution for weak gravitational lensing with unrolled       plug-and-play ADMM," used computational resources from the Computational       Photography Lab at Northwestern University.               * RELATED_TOPICS        o Space_&_Time        # Galaxies # Space_Telescopes # Astronomy # Cosmic_Rays        o Computers_&_Math        # Photography # Computers_and_Internet #        Information_Technology # Hacking        * RELATED_TERMS        o Computer_vision o Quantum_computer o 3D_computer_graphics        o Fractal o Computer-generated_imagery o Webcam o        Computer_animation o MRAM              ==========================================================================       Story Source: Materials provided by Northwestern_University. Original       written by Amanda Morris. Note: Content may be edited for style and       length.                     ==========================================================================       Journal Reference:        1. Tianao Li, Emma Alexander. Galaxy Image Deconvolution for Weak        Gravitational Lensing with Unrolled Plug-and-Play ADMM. Submitted        to arXiv, 2023 DOI: 10.48550/arXiv.2211.01567       ==========================================================================              Link to news story:       https://www.sciencedaily.com/releases/2023/03/230331120633.htm              --- up 1 year, 4 weeks, 4 days, 10 hours, 50 minutes        * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)       SEEN-BY: 15/0 106/201 114/705 123/120 153/7715 226/30 227/114 229/110       SEEN-BY: 229/111 112 113 307 317 400 426 428 470 664 700 292/854 298/25       SEEN-BY: 305/3 317/3 320/219 396/45       PATH: 317/3 229/426           |
[   << oldest   |   < older   |   list   |   newer >   |   newest >>   ]
(c) 1994, bbs@darkrealms.ca